A365274 a(n) = a(n-2) + 4*a(n-4) - 2*a(n-8) - a(n-10), with a[0..9] = [1, 1, 1, 2, 3, 5, 7, 13, 18, 31].
1, 1, 1, 2, 3, 5, 7, 13, 18, 31, 43, 78, 108, 190, 263, 471, 652, 1156, 1600, 2853, 3949, 7019, 9715, 17299, 23944, 42592, 58952, 104926, 145230, 258403, 357659, 636490, 880976, 1567619, 2169764, 3861135, 5344256, 9509879, 13162764, 23423036, 32420177
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (0,1,0,4,0,0,0,-2,0,-1).
Programs
-
Mathematica
LinearRecurrence[{0, 1, 0, 4, 0, 0, 0, -2, 0, -1}, {1, 1, 1, 2, 3, 5, 7, 13, 18, 31}, 40]
Formula
a(n) = a(n-2) + 4*a(n-4) - 2*a(n-8) - a(n-10).
a(2*n) = a(2*n-1) + a(2*n-2) - a(2*n-3) + a(2*n-4).
a(2*n+1) = a(2*n) + a(2*n-2) +2*a(2*n-3) - a(2*n-4) - a(2*n-7).
G.f.: (x^8-x^5-2*x^4+x^3+x+1)/(x^10+2*x^8-4*x^4-x^2+1).
Comments