cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A365283 E.g.f. satisfies A(x) = 1 + x*A(x)*exp(x^2*A(x)^2).

Original entry on oeis.org

1, 1, 2, 12, 120, 1380, 19440, 341040, 7029120, 164762640, 4355769600, 128527439040, 4181332700160, 148633442717760, 5734427199621120, 238676208285715200, 10659325532663808000, 508452777299622355200, 25800664274991135129600
Offset: 0

Views

Author

Seiichi Manyama, Aug 31 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1},Table[n!/(n+1) * Sum[(n-2*k)^k * Binomial[n+1,n-2*k]/k!, {k, 0, Floor[n/2]}], {n,1,20}]] (* Vaclav Kotesovec, Nov 08 2023 *)
  • PARI
    a(n) = n!*sum(k=0, n\2, (n-2*k)^k*binomial(n+1, n-2*k)/k!)/(n+1);

Formula

a(n) = (n!/(n+1)) * Sum_{k=0..floor(n/2)} (n-2*k)^k * binomial(n+1,n-2*k)/k!.
a(n) ~ 2^(n/2) * (1 + 3*LambertW(2^(1/3)/3))^(n + 3/2) * n^(n-1) / (sqrt(1 + LambertW(2^(1/3)/3)) * 3^(3*n/2 + 2) * exp(n) * LambertW(2^(1/3)/3)^(3*(n+1)/2)). - Vaclav Kotesovec, Nov 08 2023

A365282 E.g.f. satisfies A(x) = 1 + x*A(x)*exp(x^2*A(x)).

Original entry on oeis.org

1, 1, 2, 12, 96, 900, 10800, 157080, 2634240, 50455440, 1089849600, 26157479040, 690848040960, 19924295751360, 623024501299200, 20996216063222400, 758724126031872000, 29267547577396128000, 1200407895406514995200
Offset: 0

Views

Author

Seiichi Manyama, Aug 31 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[n! * Sum[(n-2*k)^k * Binomial[n-k+1,n-2*k] / ((n-k+1)*k!), {k,0,Floor[n/2]}], {n,1,20}]] (* Vaclav Kotesovec, Aug 31 2023 *)
  • PARI
    a(n) = n!*sum(k=0, n\2, (n-2*k)^k*binomial(n-k+1, n-2*k)/((n-k+1)*k!));

Formula

a(n) = n! * Sum_{k=0..floor(n/2)} (n-2*k)^k * binomial(n-k+1,n-2*k)/( (n-k+1)*k! ).
a(n) ~ sqrt((s+1)/(2*s-1)) * (s-1)^((n+1)/2) * s^(n/2 + 1) * n^(n-1) / exp(n), where s = 3.011547791499065828694160466323712196300874261862... is the root of the equation (s-1)*LambertW(2*(s-1)^2/s) = 2. - Vaclav Kotesovec, Aug 31 2023
Showing 1-2 of 2 results.