cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A365287 E.g.f. satisfies A(x) = 1 + x*A(x)*exp(x^3*A(x)^3).

Original entry on oeis.org

1, 1, 2, 6, 48, 720, 11520, 183960, 3185280, 65681280, 1637193600, 46436544000, 1423113753600, 46607434473600, 1648149184281600, 63369409495392000, 2634451417524326400, 117088187211284889600, 5518546983426135859200, 275022667579200532992000
Offset: 0

Views

Author

Seiichi Manyama, Aug 31 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1},Table[n!/(n+1) * Sum[(n-3*k)^k * Binomial[n+1,n-3*k]/k!, {k,0,Floor[n/3]}], {n,1,20}]] (* Vaclav Kotesovec, Nov 08 2023 *)
  • PARI
    a(n) = n!*sum(k=0, n\3, (n-3*k)^k*binomial(n+1, n-3*k)/k!)/(n+1);

Formula

a(n) = (n!/(n+1)) * Sum_{k=0..floor(n/3)} (n-3*k)^k * binomial(n+1,n-3*k)/k!.
a(n) ~ 3^(n/3) * (1 + 4*LambertW(3^(1/4)/4))^(n + 3/2) * n^(n-1) / (sqrt(1 + LambertW(3^(1/4)/4)) * 2^(8*n/3 + 4) * exp(n) * LambertW(3^(1/4)/4)^(4*n/3 + 3/2)). - Vaclav Kotesovec, Nov 08 2023

A365285 E.g.f. satisfies A(x) = 1 + x*A(x)*exp(x^3*A(x)).

Original entry on oeis.org

1, 1, 2, 6, 48, 480, 5040, 57960, 806400, 13426560, 250992000, 5102697600, 113283878400, 2760905347200, 73287883468800, 2093750122464000, 63947194517606400, 2082970788291993600, 72182922107859763200, 2651026034089585152000
Offset: 0

Views

Author

Seiichi Manyama, Aug 31 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n\3, (n-3*k)^k*binomial(n-2*k+1, n-3*k)/((n-2*k+1)*k!));

Formula

a(n) = n! * Sum_{k=0..floor(n/3)} (n-3*k)^k * binomial(n-2*k+1,n-3*k)/( (n-2*k+1)*k! ).

A371046 E.g.f. satisfies A(x) = 1 + x^3*A(x)^2*exp(x*A(x)).

Original entry on oeis.org

1, 0, 0, 6, 24, 60, 1560, 25410, 242256, 3508344, 85882320, 1724406750, 32784999720, 839182482996, 24162605028744, 659439484706730, 19415319297457440, 658935736181053680, 23245444335085544736, 835819877947421773494, 32462532011236141677240
Offset: 0

Views

Author

Seiichi Manyama, Mar 09 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n\3, k^(n-3*k)*binomial(n-k+1, k)/((n-k+1)*(n-3*k)!));

Formula

a(n) = n! * Sum_{k=0..floor(n/3)} k^(n-3*k) * binomial(n-k+1,k)/( (n-k+1)*(n-3*k)! ).
Showing 1-3 of 3 results.