A365300 a(n) is the smallest nonnegative integer such that the sum of any four ordered terms a(k), k<=n (repetitions allowed), is unique.
0, 1, 5, 21, 55, 153, 368, 856, 1424, 2603, 4967, 8194, 13663, 22432, 28169, 47688, 65545, 96615, 146248, 202507, 266267, 364834, 450308, 585328, 773000, 986339, 1162748, 1472659, 1993180, 2275962, 3012656, 3552307, 4590959, 5404183, 6601787, 7893270, 9340877
Offset: 1
Keywords
Examples
a(4) != 12 because 12+1+1+1 = 5+5+5+0.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..50
- J. Cilleruelo and J Jimenez-Urroz, B_h[g] sequences, Mathematika (47) 2000, pp. 109-115.
- Melvyn B. Nathanson, The third positive element in the greedy B_h-set, arXiv:2310.14426 [math.NT], 2023.
- Melvyn B. Nathanson and Kevin O'Bryant, The fourth positive element in the greedy B_h-set, arXiv:2311.14021 [math.NT], 2023.
- Kevin O'Bryant, A complete annotated bibliography of work related to Sidon sequences, Electron. J. Combin., DS11, Dynamic Surveys (2004), 39 pp.
Programs
-
Python
def GreedyBh(h, seed, stopat): A = [set() for _ in range(h+1)] A[1] = set(seed) # A[i] will hold the i-fold sumset for j in range(2,h+1): # {2,...,h} for x in A[1]: A[j].update([x+y for y in A[j-1]]) w = max(A[1])+1 while w <= stopat: wgood = True for k in range(1,h): if wgood: for j in range(k+1,h+1): if wgood and (A[j].intersection([(j-k)*w + x for x in A[k]]) != set()): wgood = False if wgood: A[1].add(w) for k in range(2,h+1): # update A[k] for j in range(1,k): A[k].update([(k-j)*w + x for x in A[j]]) w += 1 return A[1] GreedyBh(4,[0],10000)
-
Python
from itertools import count, islice, combinations_with_replacement def A365300_gen(): # generator of terms aset, alist = set(), [] for k in count(0): bset = set() for d in combinations_with_replacement(alist+[k],3): if (m:=sum(d)+k) in aset: break bset.add(m) else: yield k alist.append(k) aset |= bset A365300_list = list(islice(A365300_gen(),20)) # Chai Wah Wu, Sep 01 2023
Extensions
a(27)-a(37) from Chai Wah Wu, Sep 01 2023
Comments