cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A367120 Decimal expansion of continued fraction 2+1/(4+3/(6+5/(8+7/(...)))).

Original entry on oeis.org

2, 2, 2, 4, 4, 1, 2, 4, 3, 7, 9, 5, 6, 3, 4, 0, 4, 6, 7, 1, 6, 3, 8, 3, 7, 5, 4, 1, 3, 8, 4, 0, 2, 1, 9, 3, 9, 0, 6, 2, 7, 8, 8, 2, 5, 7, 0, 9, 4, 1, 0, 9, 2, 7, 1, 4, 6, 3, 2, 0, 3, 4, 2, 9, 7, 2, 0, 4, 3, 2, 0, 9, 2, 7, 5, 4, 4, 6, 5, 4, 8, 9, 9, 9, 9, 9, 6, 1, 9, 3, 5, 4, 0, 9, 8, 2, 5, 3, 7
Offset: 1

Views

Author

Rok Cestnik, Nov 13 2023

Keywords

Examples

			2.224412437956340467163837541384021939...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[2/HypergeometricPFQ[{1, 1}, {3/2, 3}, -1/2], 10, 100]] (* or *)
    First[RealDigits[2/Sum[(-1)^k/Binomial[k+2, 2]/(2*k+1)!!, {k, 0, Infinity}], 10, 100]] (* Paolo Xausa, Nov 18 2024 *)
  • PARI
    N=50;
    doblfac(n) = if(n<0, 0, n<2, 1, n*doblfac(n-2));
    ap1 = 2 / sum(k=0,N, (-1)^k/binomial(k+2,2)/doblfac(2*k+1));
    ap2 = 2 / sum(k=0,N+1, (-1)^k/binomial(k+2,2)/doblfac(2*k+1));
    n = 0; while(digits(floor(10^(n+1)*ap1)) == digits(floor(10^(n+1)*ap2)), n++);
    A367120 = digits(floor(10^n*ap1));

Formula

Equals 2 / pFq(1,1; 3/2,3; -1/2) where pFq() is the generalized hypergeometric function.
Equals 2 / Sum_{k>=0} (-1)^k/binomial(k+2,2)/(2*k+1)!! = 2 / (1 - 1/9 + 1/90 - 1/1050 + 1/14175 - 1/218295 + ... ).
Showing 1-1 of 1 results.