cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365320 Number of pairs of distinct positive integers <= n that cannot be linearly combined with nonnegative coefficients to obtain n.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 1, 7, 5, 12, 12, 27, 14, 42, 36, 47, 47, 83, 58, 109, 80, 116, 126, 172, 111, 195, 192, 219, 202, 294, 210, 342, 286, 354, 369, 409, 324, 509, 480, 523, 452, 640, 507, 711, 622, 675, 747, 865, 654, 916, 842, 964, 922, 1124, 940, 1147, 1029
Offset: 0

Views

Author

Gus Wiseman, Sep 06 2023

Keywords

Comments

Are there only two cases of nonzero adjacent equal parts, at positions n = 9, 15?

Examples

			The pair p = (3,6) cannot be linearly combined to obtain 8 or 10, so p is counted under a(8) and a(10), but we have 9 = 1*3 + 1*6 or 9 = 3*3 + 0*6, so p not counted under a(9).
The a(5) = 2 through a(10) = 12 pairs:
  (2,4)  (4,5)  (2,4)  (3,6)  (2,4)  (3,6)
  (3,4)         (2,6)  (3,7)  (2,6)  (3,8)
                (3,5)  (5,6)  (2,8)  (3,9)
                (3,6)  (5,7)  (4,6)  (4,7)
                (4,5)  (6,7)  (4,7)  (4,8)
                (4,6)         (4,8)  (4,9)
                (5,6)         (5,6)  (6,7)
                              (5,7)  (6,8)
                              (5,8)  (6,9)
                              (6,7)  (7,8)
                              (6,8)  (7,9)
                              (7,8)  (8,9)
		

Crossrefs

The unrestricted version is A000217, ranks A001358.
For strict partitions we have A365312, complement A365311.
The (binary) complement is A365314, positive A365315.
The case of positive coefficients is A365321, for all subsets A365322.
For partitions we have A365378, complement A365379.
For all subsets instead of just pairs we have A365380, complement A365073.
A004526 counts partitions of length 2, shift right for strict.
A007865 counts sum-free subsets, complement A093971.
A179822 and A326080 count sum-closed subsets.
A326083 and A124506 appear to count combination-free subsets.
A364350 counts combination-free strict partitions.
A364914 and A365046 count combination-full subsets.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Subsets[Range[n],{2}],combs[n,#]=={}&]],{n,0,30}]
  • Python
    from itertools import count
    from sympy import divisors
    def A365320(n):
        a = set()
        for i in range(1,n+1):
            if not n%i:
                a.update(tuple(sorted((i,j))) for j in range(1,n+1) if j!=i)
            else:
                for j in count(0,i):
                    if j > n:
                        break
                    k = n-j
                    for d in divisors(k):
                        if d>=i:
                            break
                        a.add((d,i))
        return (n*(n-1)>>1)-len(a) # Chai Wah Wu, Sep 13 2023