cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365321 Number of pairs of distinct positive integers <= n that cannot be linearly combined with positive coefficients to obtain n.

Original entry on oeis.org

0, 0, 1, 2, 4, 6, 10, 13, 18, 24, 30, 37, 46, 54, 63, 77, 85, 99, 111, 127, 141, 161, 171, 194, 210, 235, 246, 277, 293, 322, 342, 372, 389, 428, 441, 491, 504, 545, 561, 612, 635, 680, 701, 753, 773, 836, 846, 911, 932, 1000, 1017, 1082, 1103, 1176, 1193
Offset: 0

Views

Author

Gus Wiseman, Sep 06 2023

Keywords

Comments

We consider (for example) that 2x + y + 3z is a positive linear combination of (x,y,z), but 2x + y is not, as the coefficient of z is 0.

Examples

			For the pair p = (2,3) we have 4 = 2*2 + 0*3, so p is not counted under A365320(4), but it is not possible to write 4 as a positive linear combination of 2 and 3, so p is counted under a(4).
The a(2) = 1 through a(7) = 13 pairs:
  (1,2)  (1,3)  (1,4)  (1,5)  (1,6)  (1,7)
         (2,3)  (2,3)  (2,4)  (2,3)  (2,4)
                (2,4)  (2,5)  (2,5)  (2,6)
                (3,4)  (3,4)  (2,6)  (2,7)
                       (3,5)  (3,4)  (3,5)
                       (4,5)  (3,5)  (3,6)
                              (3,6)  (3,7)
                              (4,5)  (4,5)
                              (4,6)  (4,6)
                              (5,6)  (4,7)
                                     (5,6)
                                     (5,7)
                                     (6,7)
		

Crossrefs

The unrestricted version is A000217, ranks A001358.
For strict partitions we have A088528, complement A088314.
The (binary) complement is A365315, nonnegative A365314.
For nonnegative coefficients we have A365320, for subsets A365380.
For all subsets instead of just pairs we have A365322, complement A088314.
A004526 counts partitions of length 2, shift right for strict.
A007865 counts sum-free subsets, complement A093971.
A179822 and A326080 count sum-closed subsets.
A326083 and A124506 count combination-free subsets.
A364350 counts combination-free strict partitions.
A364914 and A365046 count combination-full subsets.

Programs

  • Mathematica
    combp[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,1,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Subsets[Range[n],{2}], combp[n,#]=={}&]],{n,0,30}]
  • Python
    from itertools import count
    from sympy import divisors
    def A365321(n):
        a = set()
        for i in range(1,n+1):
            for j in count(i,i):
                if j >= n:
                    break
                for d in divisors(n-j):
                    if d>=i:
                        break
                    a.add((d,i))
        return (n*(n-1)>>1)-len(a) # Chai Wah Wu, Sep 12 2023