cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365334 The sum of exponentially odd divisors of the largest square dividing n.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 3, 4, 1, 1, 3, 1, 1, 1, 11, 1, 4, 1, 3, 1, 1, 1, 3, 6, 1, 4, 3, 1, 1, 1, 11, 1, 1, 1, 12, 1, 1, 1, 3, 1, 1, 1, 3, 4, 1, 1, 11, 8, 6, 1, 3, 1, 4, 1, 3, 1, 1, 1, 3, 1, 1, 4, 43, 1, 1, 1, 3, 1, 1, 1, 12, 1, 1, 6, 3, 1, 1, 1, 11, 31, 1, 1, 3, 1
Offset: 1

Views

Author

Amiram Eldar, Sep 01 2023

Keywords

Comments

The number of these divisors is A365333(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1 - Mod[e, 2]) - p)/(p^2 - 1) + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^(f[i,2] + 1 - f[i,2]%2) - f[i,1])/(f[i,1]^2 - 1) + 1);}

Formula

a(n) = A033634(A008833(n)).
a(n) = 1 if and only if n is squarefree (A005117).
Multiplicative with a(p^e) = 1 + (p^(e + 1 - (e mod 2)) - 1)/(p^2 - 1).
Dirichlet g.f.: zeta(s) * zeta(2*s-2) * Product_{p prime} (1 - 1/p^(2*s-2) + 1/p^(2*s-1)).