cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A365335 The number of exponentially odd coreful divisors of the square root of the largest square dividing n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Sep 01 2023

Keywords

Comments

First differs from A160338 at n = 64, and from A178489 at n = 65.
The number of divisors of the square root of the largest square dividing n is A046951(n).
The number of exponentially odd divisors of the square root of the largest square dividing n is A365549(n) and their sum is A365336(n). [corrected, Sep 08 2023]

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Max[1, Floor[(e+2)/4]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> max(1, (x+2)\4), factor(n)[, 2]));

Formula

a(n) = A325837(A000188(n)).
a(n) > 1 if and only if n is a bicubeful number (A355265).
Multiplicative with a(p^e) = floor((e+2)/4).
Dirichlet g.f.: zeta(s) * zeta(4*s) * Product_{p prime} (1 - 1/p^(4*s) + 1/p^(6*s)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(4) * Product_{p prime} (1 - 1/p^4 + 1/p^6) = 1.0181534831085... .

Extensions

Name corrected by Amiram Eldar, Sep 08 2023
Showing 1-1 of 1 results.