A365337 The sum of divisors of the largest exponentially odd number dividing n.
1, 3, 4, 3, 6, 12, 8, 15, 4, 18, 12, 12, 14, 24, 24, 15, 18, 12, 20, 18, 32, 36, 24, 60, 6, 42, 40, 24, 30, 72, 32, 63, 48, 54, 48, 12, 38, 60, 56, 90, 42, 96, 44, 36, 24, 72, 48, 60, 8, 18, 72, 42, 54, 120, 72, 120, 80, 90, 60, 72, 62, 96, 32, 63, 84, 144, 68
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[p_, e_] := (p^(e + Mod[e, 2]) - 1)/(p - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
PARI
a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^(f[i,2] + f[i,2]%2) - 1)/(f[i,1] - 1));}
Formula
Multiplicative with a(p^e) = (p^(e+1)-1)/(p-1) if e is odd and (p^e-1)/(p-1) if e is even.
Dirichlet g.f.: zeta(s) * zeta(2*s-2) * Product_{p prime} (1 + 1/p^(s-1) - 1/p^(2*s-2) + 1/p^(3*s-2)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{p prime} (1 + 1/(p*(p^2-1))) = 1.2312911488886... (A065487). - Amiram Eldar, Sep 01 2023
Comments