cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365372 Array read by ascending antidiagonals: A(n, k) = n*(k*n^2 - 1) with k > 0.

Original entry on oeis.org

0, 6, 1, 24, 14, 2, 60, 51, 22, 3, 120, 124, 78, 30, 4, 210, 245, 188, 105, 38, 5, 336, 426, 370, 252, 132, 46, 6, 504, 679, 642, 495, 316, 159, 54, 7, 720, 1016, 1022, 858, 620, 380, 186, 62, 8, 990, 1449, 1528, 1365, 1074, 745, 444, 213, 70, 9, 1320, 1990, 2178, 2040, 1708, 1290, 870, 508, 240, 78, 10
Offset: 1

Views

Author

Stefano Spezia, Sep 02 2023

Keywords

Examples

			The array begins:
    0,   1,   2,   3,    4,    5, ...
    6,  14,  22,  30,   38,   46, ...
   24,  51,  78, 105,  132,  159, ...
   60, 124, 188, 252,  316,  380, ...
  120, 245, 370, 495,  620,  745, ...
  210, 426, 642, 858, 1074, 1290, ...
  ...
		

Crossrefs

Cf. A007531, A017137, A035328 (k=4), A058895 (main diagonal), A365373 (antidiagonal sums).

Programs

  • Mathematica
    A[n_,k_]:=n(k n^2-1); Table[A[n-k+1,k],{n,11},{k,n}]//Flatten

Formula

G.f.: x*y*(x^2*y + y - 2*x*(y - 3))/((1 - x)^4*(1 - y)^2).
1st column: A(n, 1) = A007531(n+1).
2nd row: A(2, n) = A017137(n-1).