cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365373 a(n) = n*(3*n^4 + 15*n^3 + 25*n^2 - 15*n - 28)/60.

Original entry on oeis.org

0, 0, 7, 40, 136, 356, 791, 1568, 2856, 4872, 7887, 12232, 18304, 26572, 37583, 51968, 70448, 93840, 123063, 159144, 203224, 256564, 320551, 396704, 486680, 592280, 715455, 858312, 1023120, 1212316, 1428511, 1674496, 1953248, 2267936, 2621927, 3018792, 3462312
Offset: 0

Views

Author

Stefano Spezia, Sep 02 2023

Keywords

Crossrefs

Antidiagonal sums of A365372.
Cf. A068601 (2nd differences).

Programs

  • Mathematica
    a[n_]:= n*(3*n^4 + 15*n^3 + 25*n^2 - 15*n - 28)/60; Array[a,37,0]
  • Python
    def A365373(n): return n*(n*(n*(n*(3*n + 15) + 25) - 15) - 28)//60 # Chai Wah Wu, Sep 04 2023

Formula

a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n > 5.
O.g.f.: x^2*(7 - 2*x + x^2)/(1 - x)^6.
E.g.f.: exp(x)*x^2*(210 + 190*x + 45*x^2 + 3*x^3)/60.