A365382 Number of relatively prime integer partitions with sum < n that cannot be linearly combined using nonnegative coefficients to obtain n.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 4, 4, 2, 4, 12, 8, 20, 11, 14, 26, 43, 19, 38, 53, 51, 48, 101, 48, 124, 96, 121, 159, 134, 103, 241, 261, 244, 175, 401, 229, 488, 358, 328
Offset: 0
Examples
The a(11) = 2 through a(18) = 8 partitions: (5,4) . (6,5) (6,5) (7,6) (7,5) (7,4) (7,5) (7,3) (7,4) (8,5) (9,4) (7,6) (7,6) (8,7) (7,5) (9,4) (9,5) (8,5) (10,7) (8,3) (10,3) (11,3) (8,7) (11,4) (9,5) (11,5) (9,7) (12,5) (10,3) (13,4) (11,4) (7,5,5) (11,5) (13,3) (7,4,4) (10,3,3)
Crossrefs
This is the relatively prime case of A365378.
Programs
-
Mathematica
combsu[n_,y_]:=With[{s=Table[{k,i},{k,Union[y]},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]]; Table[Length[Select[Join@@IntegerPartitions/@Range[n-1],GCD@@#==1&&combsu[n,#]=={}&]],{n,0,20}]
-
Python
from math import gcd from sympy.utilities.iterables import partitions def A365382(n): a = {tuple(sorted(set(p))) for p in partitions(n)} return sum(1 for m in range(1,n) for b in partitions(m) if gcd(*b.keys()) == 1 and not any(set(d).issubset(set(b)) for d in a)) # Chai Wah Wu, Sep 13 2023
Extensions
a(21)-a(45) from Chai Wah Wu, Sep 13 2023