cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A365398 Length of the longest subsequence of 1, ..., n on which sigma, the sum of the divisors of n (A000203), is nondecreasing.

Original entry on oeis.org

1, 2, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 8, 9, 10, 10, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 17, 17, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 20, 20, 21, 21, 21, 21, 22, 22, 22, 23, 24, 24, 25, 25, 25
Offset: 1

Views

Author

Peter Luschny, Sep 08 2023

Keywords

Comments

The sequence was inspired by A365339. In particular, note remark (4.4) by Terence Tao in the linked paper.

Crossrefs

Programs

  • Python
    from bisect import bisect
    from sympy import divisor_sigma
    def A365398(n):
        plist, qlist, c = tuple(divisor_sigma(i) for i in range(1,n+1)), [0]*(n+1), 0
        for i in range(n):
            qlist[a:=bisect(qlist,plist[i],lo=1,hi=c+1,key=lambda x:plist[x])]=i
            c = max(c,a)
        return c # Chai Wah Wu, Sep 08 2023

Formula

a(n+1) - a(n) <= 1.
a(n) >= A000720(n)+1 since A000203(p) = p+1 for p prime. - Chai Wah Wu, Sep 08 2023

A371156 Length of the longest subsequence of 1, ..., n on which the Dedekind psi function (A001615) is nondecreasing.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 6, 7, 8, 9, 9, 10, 10, 11, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 17, 17, 18, 18, 19, 19, 19, 20, 21, 21, 22, 22, 22, 22, 23, 23, 24, 24, 24, 25, 26, 26, 27, 27, 27, 27, 28, 28, 29, 29, 29, 29, 30, 30, 31, 31, 31, 32, 33, 33, 34, 34, 34
Offset: 1

Views

Author

Chai Wah Wu, Apr 10 2024

Keywords

Comments

The envelope max_{i<=n} (a(i)-A000720(i)) appears to be slowly increasing as n increases. For instance, a(1)-A000720(1)=1, whereas a(374598)-A000720(374598)=91 and a(642852)-A000720(642852)=96.

Examples

			a(7) = 6 because A001615 is nondecreasing on 1,2,3,4,5,6 or 1,2,3,4,5,7 but not on 1,2,3,4,5,6,7.
		

Crossrefs

Programs

  • Mathematica
    Length[LongestOrderedSequence[#]] & /@ Rest[FoldList[Append, {}, Table[n DivisorSum[n, MoebiusMu[#]^2/# &], {n, 20}]]] (* Eric W. Weisstein, Mar 09 2025 *)
  • Python
    from math import prod
    from bisect import bisect
    from sympy import primefactors
    def A371156(n):
        def f(n):
            r = primefactors(n)
            return n*prod(p+1 for p in r)//prod(r)
        plist, qlist, c = tuple(f(i) for i in range(1,n+1)), [0]*(n+1), 0
        for i in range(n):
            qlist[a:=bisect(qlist,plist[i],lo=1,hi=c+1,key=lambda x:plist[x])]=i
            c = max(c,a)
        return c

Formula

0 <= a(n+1) - a(n) <= 1.
a(n) >= A000720(n)+1 since A001615(p) = p+1 for p prime.
Showing 1-2 of 2 results.