cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365401 The number of divisors of the largest unitary divisor of n that is a square.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 5, 1, 3, 1, 3, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 5, 3, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 7, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 3, 3, 1, 1, 1, 5, 5, 1, 1, 3, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Sep 03 2023

Keywords

Comments

First differs from A212181 at n = 32.
The sum of these divisors is A351568(n).
All the terms are odd.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], 1, e + 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(x%2, 1, x+1), factor(n)[, 2]));

Formula

a(n) = A000005(A350388(n)).
a(n) = A000005(n) / A365402(n).
a(n) <= A000005(n) with equality if and only if n is a square (A000290).
a(n) >= 1 with equality if and only if n is an exponentially odd number (A268335).
Multiplicative with a(p^e) = 1 if e is odd, and e+1 if e is even.
Dirichlet g.f.: zeta(2*s)^2 * Product_{p prime} (1 + 1/p^s + 1/p^(2*s) - 1/p^(3*s)).
From Vaclav Kotesovec, Sep 05 2023: (Start)
Dirichlet g.f.: zeta(s) * zeta(2*s)^2 * Product_{p prime} (1 - 2/p^(3*s) + 1/p^(4*s)).
Let f(s) = Product_{p prime} (1 - 2/p^(3*s) + 1/p^(4*s)).
Sum_{k=1..n} a(k) ~ f(1) * Pi^4 * n / 36 + sqrt(n) * zeta(1/2) * f(1/2)/2 * (log(n) + 4*gamma - 2 + zeta'(1/2)/zeta(1/2) + f'(1/2)/f(1/2)), where
f(1) = Product_{p prime} (1 - 2/p^3 + 1/p^4) = 0.7446954979060674204391238715944543281179691329049241118630718137015097502...,
f(1/2) = Product_{p prime} (1 - 2/p^(3/2) + 1/p^2) = 0.2312522106782016049013780988087017618011735848676872392115785564006277675...,
f'(1/2) = f(1/2) * Sum_{p prime} 2*(3*sqrt(p) - 2) * log(p) / (1 - 2*sqrt(p) + p^2) = f(1/2) * 6.937179176924511608542644054340717439502789953858512457656... and gamma is the Euler-Mascheroni constant A001620. (End)