cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365404 The sum of the unitary divisors of the square root of the largest square dividing n.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 3, 4, 1, 1, 3, 1, 1, 1, 5, 1, 4, 1, 3, 1, 1, 1, 3, 6, 1, 4, 3, 1, 1, 1, 5, 1, 1, 1, 12, 1, 1, 1, 3, 1, 1, 1, 3, 4, 1, 1, 5, 8, 6, 1, 3, 1, 4, 1, 3, 1, 1, 1, 3, 1, 1, 4, 9, 1, 1, 1, 3, 1, 1, 1, 12, 1, 1, 6, 3, 1, 1, 1, 5, 10, 1, 1, 3, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Sep 03 2023

Keywords

Comments

The number of these divisors is A323308(n).
The sum of the unitary divisors of the largest square dividing n is A365403(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 1, 1, p^Floor[e/2] + 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2] == 1, 1, 1 + f[i,1]^(f[i,2]\2)));}

Formula

a(n) = A034448(A000188(n)).
a(n) >= 1 with equality if and only if n is squarefree (A005117).
Multiplicative with a(p) = 1 and a(p^e) = p^floor(e/2) + 1 for e >= 2.
Dirichlet g.f.: zeta(s) * zeta(2*s-1) / zeta(4*s-1).
Sum_{k=1..n} a(k) ~ (n/(2*zeta(3))) * (log(n) + 3*gamma - 1 - 4*zeta'(3)/zeta(3)), where gamma is Euler's constant (A001620).