A365406 Numbers j whose largest divisor <= sqrt(j) is a power of 2.
1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20, 22, 23, 24, 26, 28, 29, 31, 32, 34, 37, 38, 41, 43, 44, 46, 47, 52, 53, 58, 59, 61, 62, 64, 67, 68, 71, 72, 73, 74, 76, 79, 80, 82, 83, 86, 88, 89, 92, 94, 96, 97, 101, 103, 104, 106, 107, 109, 112, 113, 116, 118, 122, 124, 127, 128, 131, 134, 136, 137
Offset: 1
Keywords
Examples
From _Peter Munn_, Oct 26 2023: (Start) The table below looks at numbers j with prime signature (4, 1), showing the presence of j and its characterization by A290110(j): j A290110(j) present 48 = 2^4 * 3 16 no 80 = 2^4 * 5 21 yes 112 = 2^4 * 7 21 yes 162 = 2 * 3^4 36 no 176 = 2^4 * 11 38 no 208 = 2^4 * 13 38 no 272 = 2^4 * 17 51 yes 304 = 2^4 * 19 51 yes 368 = 2^4 * 23 51 yes ... Clearly any odd composite number is exempted, for example: 891 = 3^4 * 11 21 no 6723 = 3^4 * 83 51 no Note that A290110(j) = 36 for j = 2 * p^4, prime p; and A290110(j) = 51 for j = 2^4 * p, prime p >= 17. (End)
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
q[n_] := Module[{d = Divisors[n], mid}, mid = d[[Ceiling[Length[d]/2]]]; mid == 2^IntegerExponent[mid, 2]]; Select[Range[150], q] (* Amiram Eldar, Oct 11 2023 *)
-
PARI
f(n) = local(d); if(n<2, 1, d=divisors(n); d[(length(d)+1)\2]); \\ A033676 isp2(n) = 2^logint(n,2) == n; isok(k) = isp2(f(k)); \\ Michel Marcus, Oct 11 2023
-
Python
from itertools import count, islice from sympy import divisors def A365406_gen(startvalue=1): # generator of terms >= startvalue return filter(lambda i:(a:=(d:=divisors(i))[len(d)-1>>1])==1<
A365406_list = list(islice(A365406_gen(),30)) # Chai Wah Wu, Oct 18 2023
Comments