cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A365392 Lexicographically earliest infinite sequence such that a(i) = a(j) => f(i) = f(j) for all i, j >= 1, where f(n) = [A336158(n), A364255(n), A365425(n)].

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 5, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 10, 5, 21, 22, 23, 24, 25, 12, 26, 7, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 19, 39, 10, 5, 40, 41, 42, 43, 44, 45, 46, 47, 48, 20, 23, 12, 49, 12, 13, 50, 51, 52, 53, 54, 55, 56, 57, 16, 58, 59, 60, 61, 62, 63, 64, 18, 65, 66, 67, 36
Offset: 1

Views

Author

Antti Karttunen, Sep 04 2023

Keywords

Comments

Restricted growth sequence transform of triplet [A336158(n), A364255(n), A365425(n)].
For all i, j >= 1:
a(i) = a(j) => A286531(i) = A286531(j),
a(i) = a(j) => A305891(i) = A305891(j),
a(i) = a(j) => A365391(i) = A365391(j),
a(i) = a(j) => A365421(i) = A365421(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A000265(n) = (n>>valuation(n,2));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
    A163511(n) = if(!n, 1, my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p));
    A364255(n) = gcd(n, A163511(n));
    A365392aux(n) = [A364255(n), A046523(A000265(n)), A046523(A000265(A163511(n)))];
    v365392 = rgs_transform(vector(up_to,n,A365392aux(n)));
    A365392(n) = v365392[n];

A365395 Lexicographically earliest infinite sequence such that a(i) = a(j) => A365425(i) = A365425(j) and A365427(i) = A365427(j) for all i, j >= 0.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 2, 4, 1, 5, 3, 6, 2, 7, 4, 2, 1, 8, 5, 9, 3, 10, 6, 3, 2, 11, 7, 7, 4, 12, 2, 4, 1, 13, 8, 14, 5, 15, 9, 5, 3, 16, 10, 11, 6, 17, 3, 6, 2, 18, 11, 10, 7, 19, 7, 7, 4, 17, 12, 20, 2, 7, 4, 21, 1, 22, 13, 23, 8, 24, 14, 8, 5, 25, 15, 18, 9, 26, 5, 9, 3, 27, 16, 16, 10, 28, 11, 10, 6, 29, 17, 30, 3, 10, 6
Offset: 0

Views

Author

Antti Karttunen, Sep 04 2023

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A365425(n), A365427(n)].
Restricted growth sequence transform of the function f(n) = A336390(A163511(n)).
For all i, j: a(i) = a(j) => A365385(i) = A365385(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A000265(n) = (n>>valuation(n,2));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
    A163511(n) = if(!n, 1, my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p));
    A365425(n) = A046523(A000265(A163511(n)));
    A336467(n) = { my(f=factor(n)); prod(k=1,#f~,if(2==f[k,1],1,(A000265(f[k,1]+1))^f[k,2])); };
    A365427(n) = A336467(A163511(n));
    A365395aux(n) = [A365425(n), A365427(n)];
    v365395 = rgs_transform(vector(1+up_to,n,A365395aux(n-1)));
    A365395(n) = v365395[1+n];

Formula

For all n >= 1, a(n) = a(2*n) = a(A000265(n)).

A366792 Lexicographically earliest infinite sequence such that a(i) = a(j) => A365425(i) = A365425(j) and A366787(i) = A366787(j) for all i, j >= 0.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 2, 4, 1, 5, 3, 6, 2, 7, 4, 2, 1, 8, 5, 9, 3, 10, 6, 3, 2, 11, 7, 7, 4, 12, 2, 13, 1, 14, 8, 15, 5, 16, 9, 5, 3, 17, 10, 11, 6, 18, 3, 19, 2, 20, 11, 10, 7, 21, 7, 22, 4, 18, 12, 23, 2, 22, 13, 4, 1, 24, 14, 25, 8, 26, 15, 8, 5, 27, 16, 20, 9, 28, 5, 29, 3, 30, 17, 17, 10, 31, 11, 32, 6, 33, 18, 34, 3
Offset: 0

Views

Author

Antti Karttunen, Oct 23 2023

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A365425(n), A366787(n)].
Restricted growth sequence transform of the function f(n) = A366790(A163511(n)).
For all i, j >= 0: a(i) = a(j) => A366788(i) = A366788(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A000265(n) = (n>>valuation(n,2));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
    A163511(n) = if(!n, 1, my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p));
    A365425(n) = A046523(A000265(A163511(n)));
    A366789(n) = { my(f=factor(n)); prod(k=1, #f~, A000265(primepi(f[k, 1]))^f[k, 2]); };
    A366787(n) = A366789(A163511(n));
    A366792aux(n) = [A365425(n), A366787(n)];
    v366792 = rgs_transform(vector(1+up_to,n,A366792aux(n-1)));
    A366792(n) = v366792[1+n];

Formula

For all n >= 1, a(n) = a(2*n) = a(A000265(n)).

A365394 Lexicographically earliest infinite sequence such that a(i) = a(j) => A365425(i) = A365425(j) and A365426(i) = A365426(j) for all i, j >= 0.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 2, 2, 1, 4, 3, 3, 2, 5, 2, 6, 1, 7, 4, 4, 3, 8, 3, 9, 2, 8, 5, 10, 2, 10, 6, 11, 1, 12, 7, 7, 4, 13, 4, 14, 3, 15, 8, 16, 3, 16, 9, 17, 2, 13, 8, 18, 5, 19, 10, 20, 2, 18, 10, 21, 6, 21, 11, 6, 1, 22, 12, 12, 7, 23, 7, 24, 4, 25, 13, 26, 4, 26, 14, 27, 3, 25, 15, 28, 8, 29, 16, 30, 3, 28, 16, 31, 9, 31, 17
Offset: 0

Views

Author

Antti Karttunen, Sep 04 2023

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A365425(n), A365426(n)].
Restricted growth sequence transform of the function f(n) = A336470(A163511(n)).
For all i, j: a(i) = a(j) => A334204(i) = A334204(j).

Crossrefs

Cf. also A350067, A365395, A366792 (compare the scatter plots).

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A000265(n) = (n>>valuation(n,2));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
    A163511(n) = if(!n, 1, my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p));
    A365425(n) = A046523(A000265(A163511(n)));
    A336466(n) = { my(f=factor(n)); prod(k=1, #f~, A000265(f[k, 1]-1)^f[k, 2]); };
    A365426(n) = A336466(A163511(n));
    A365394aux(n) = [A365425(n), A365426(n)];
    v365394 = rgs_transform(vector(1+up_to,n,A365394aux(n-1)));
    A365394(n) = v365394[1+n];

Formula

For all n >= 1, a(n) = a(2*n) = a(A000265(n)).

A366891 Lexicographically earliest infinite sequence such that a(i) = a(j) => A365425(i) = A365425(j), A206787(A163511(i)) = A206787(A163511(j)) and A336651(A163511(n)) = A336651(A163511(j)) for all i, j >= 0.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 2, 4, 1, 5, 3, 6, 2, 7, 4, 8, 1, 9, 5, 10, 3, 11, 6, 12, 2, 13, 7, 14, 4, 15, 8, 16, 1, 17, 9, 18, 5, 19, 10, 20, 3, 21, 11, 22, 6, 23, 12, 24, 2, 25, 13, 26, 7, 27, 14, 28, 4, 29, 15, 30, 8, 14, 16, 31, 1, 32, 17, 33, 9, 34, 18, 35, 5, 36, 19, 37, 10, 38, 20, 39, 3, 40, 21, 41, 11, 42, 22, 43, 6, 44, 23
Offset: 0

Views

Author

Antti Karttunen, Nov 04 2023

Keywords

Comments

Restricted growth sequence transform of the triplet [A365425(n), A206787(A163511(n)), A336651(A163511(n))], and also by conjecture, of sequence b(n) = A351040(A163511(n)).
For all i, j >= 0:
a(i) = a(j) => A365395(i) = A365395(j),
a(i) = a(j) => A366874(i) = A366874(j),
a(i) = a(j) => A366881(i) = A366881(j).

Crossrefs

Differs from A366806 for the first time at n=105, where a(105) = 52, while A366806(105) = 19.
Differs from A366881 for the first time at n=511, where a(511) = 249, while A366881(511) = 7.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A000265(n) = (n>>valuation(n,2));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
    A163511(n) = if(!n, 1, my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p));
    A365425(n) = A046523(A000265(A163511(n)));
    A206787(n) = sumdiv(n, d, d*issquarefree(2*d));
    A336651(n) = { my(f=factor(n>>valuation(n,2))); prod(i=1, #f~, f[i,1]^(f[i,2]-1)); };
    A366891aux(n) = [A365425(n), A206787(A163511(n)), A336651(A163511(n))];
    v366891 = rgs_transform(vector(1+up_to,n,A366891aux(n-1)));
    A366891(n) = v366891[1+n];

Formula

For all n >= 1, a(n) = a(2*n) = a(A000265(n)).

A365391 Lexicographically earliest infinite sequence such that a(i) = a(j) => A336158(i) = A336158(j) and A365425(i) = A365425(j) for all i, j >= 1.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 2, 1, 4, 3, 3, 2, 5, 2, 6, 1, 7, 4, 8, 3, 9, 3, 3, 2, 10, 5, 11, 2, 5, 6, 2, 1, 12, 7, 13, 4, 14, 8, 15, 3, 16, 9, 17, 3, 18, 3, 3, 2, 19, 10, 9, 5, 20, 11, 21, 2, 9, 5, 5, 6, 5, 2, 22, 1, 23, 12, 24, 7, 25, 13, 7, 4, 26, 14, 27, 8, 28, 15, 8, 3, 29, 16, 16, 9, 30, 17, 9, 3, 16, 18, 9, 3, 9, 3, 31, 2
Offset: 1

Views

Author

Antti Karttunen, Sep 03 2023

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A336158(n), A365425(n)].
For all i, j:
A003602(i) = A003602(j) => a(i) = a(j),
A365392(i) = A365392(j) => a(i) = a(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A000265(n) = (n>>valuation(n,2));
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523
    A163511(n) = if(!n, 1, my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p));
    A365391aux(n) = [A046523(A000265(n)), A046523(A000265(A163511(n)))];
    v365391 = rgs_transform(vector(up_to,n,A365391aux(n)));
    A365391(n) = v365391[n];
Showing 1-6 of 6 results.