A365394 Lexicographically earliest infinite sequence such that a(i) = a(j) => A365425(i) = A365425(j) and A365426(i) = A365426(j) for all i, j >= 0.
1, 1, 1, 2, 1, 3, 2, 2, 1, 4, 3, 3, 2, 5, 2, 6, 1, 7, 4, 4, 3, 8, 3, 9, 2, 8, 5, 10, 2, 10, 6, 11, 1, 12, 7, 7, 4, 13, 4, 14, 3, 15, 8, 16, 3, 16, 9, 17, 2, 13, 8, 18, 5, 19, 10, 20, 2, 18, 10, 21, 6, 21, 11, 6, 1, 22, 12, 12, 7, 23, 7, 24, 4, 25, 13, 26, 4, 26, 14, 27, 3, 25, 15, 28, 8, 29, 16, 30, 3, 28, 16, 31, 9, 31, 17
Offset: 0
Links
- Antti Karttunen, Table of n, a(n) for n = 0..65537
Crossrefs
Programs
-
PARI
up_to = 65537; rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; }; A000265(n) = (n>>valuation(n,2)); A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ From A046523 A163511(n) = if(!n, 1, my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p)); A365425(n) = A046523(A000265(A163511(n))); A336466(n) = { my(f=factor(n)); prod(k=1, #f~, A000265(f[k, 1]-1)^f[k, 2]); }; A365426(n) = A336466(A163511(n)); A365394aux(n) = [A365425(n), A365426(n)]; v365394 = rgs_transform(vector(1+up_to,n,A365394aux(n-1))); A365394(n) = v365394[1+n];
Formula
For all n >= 1, a(n) = a(2*n) = a(A000265(n)).
Comments