cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A365393 Lexicographically earliest infinite sequence such that a(i) = a(j) => A364492(i) = A364492(j) for all i, j >= 0, where A364492(n) is the denominator of n / A163511(n).

Original entry on oeis.org

1, 2, 2, 1, 2, 3, 1, 4, 2, 5, 3, 6, 1, 7, 4, 8, 2, 9, 5, 10, 3, 6, 6, 11, 1, 3, 7, 12, 4, 13, 8, 14, 2, 9, 9, 10, 5, 15, 10, 16, 3, 17, 6, 18, 6, 11, 11, 19, 1, 20, 3, 21, 7, 22, 12, 8, 4, 13, 13, 23, 8, 24, 14, 25, 2, 26, 9, 27, 9, 28, 10, 29, 5, 30, 15, 16, 10, 31, 16, 32, 3, 6, 17, 33, 6, 31, 18, 34, 6, 35, 11
Offset: 0

Views

Author

Antti Karttunen, Sep 06 2023

Keywords

Comments

Restricted growth sequence transform of A364492.
Question: Which sets of numbers cause the finite branches that grow off-angle from the rays emanating from the origin in the scatter plot, and why the sudden bends in some of them? Compare also to the scatter plot of A365431.

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A163511(n) = if(!n, 1, my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p));
    A364492(n) = { my(u=A163511(n)); (u/gcd(n, u)); };
    v365393 = rgs_transform(vector(1+up_to,n,A364492(n-1)));
    A365393(n) = v365393[1+n];

Formula

For all n >= 1, a(n) = a(2*n) = a(A000265(n)).

A366376 Lexicographically earliest infinite sequence such that a(i) = a(j) => A366375(i) = A366375(j) for all i, j >= 0, where A366375(n) is the denominator of n / A332214(n).

Original entry on oeis.org

1, 2, 2, 1, 2, 3, 1, 1, 2, 4, 3, 5, 1, 6, 1, 1, 2, 7, 4, 8, 3, 9, 5, 10, 1, 11, 6, 12, 1, 13, 1, 1, 2, 7, 7, 8, 4, 14, 8, 15, 3, 16, 9, 17, 5, 18, 10, 19, 1, 20, 11, 21, 6, 22, 12, 23, 1, 13, 13, 24, 1, 25, 1, 26, 2, 27, 7, 28, 7, 29, 8, 30, 4, 31, 14, 12, 8, 32, 15, 33, 3, 5, 16, 34, 9, 22, 17, 35, 5, 36, 18, 19, 10
Offset: 0

Views

Author

Antti Karttunen, Oct 08 2023

Keywords

Comments

Restricted growth sequence transform of A366375.

Crossrefs

Cf. also A365393, A365431, A366286 (compare the scatter plots).

Programs

  • PARI
    \\ Needs also program from A332214:
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A366375(n) = { my(u=A332214(n)); (u/gcd(n,u)); };
    v366376 = rgs_transform(vector(1+up_to,n,A366375(n-1)));
    A366376(n) = v366376[1+n];

A366286 Lexicographically earliest infinite sequence such that a(i) = a(j) => A366285(i) = A366285(j) for all i, j >= 0, where A366285(n) is the denominator of n / A366275(n).

Original entry on oeis.org

1, 2, 2, 1, 2, 3, 1, 4, 2, 5, 3, 6, 1, 7, 4, 8, 2, 9, 5, 10, 3, 7, 6, 11, 1, 4, 7, 12, 4, 13, 8, 14, 2, 9, 9, 15, 5, 16, 10, 11, 3, 17, 7, 18, 6, 13, 11, 19, 1, 20, 4, 21, 7, 22, 12, 1, 4, 23, 13, 24, 8, 25, 14, 26, 2, 27, 9, 28, 9, 16, 15, 29, 5, 30, 16, 11, 10, 31, 11, 32, 3, 20, 17, 33, 7, 34, 18, 35, 6, 36, 13, 19
Offset: 0

Views

Author

Antti Karttunen, Oct 07 2023

Keywords

Comments

Restricted growth sequence transform of A366285.

Crossrefs

Cf. also A365393, A365431 (compare the scatter plots).

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A366285(n) = { my(u=A366275(n)); (u/gcd(n,u)); }; \\ Uses also the program given in A366275.
    v366286 = rgs_transform(vector(1+up_to,n,A366285(n-1)));
    A366286(n) = v366286[1+n];

A365432 a(n) = A156552(A364502(n)), where A364502(n) = A005940(n) / gcd(n, A005940(n)), and A156552 is the inverse of offset-0 version of Doudna-sequence A005940.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 6, 0, 8, 0, 10, 0, 12, 6, 6, 0, 16, 8, 18, 0, 4, 10, 22, 0, 24, 12, 12, 6, 28, 6, 30, 0, 32, 16, 34, 8, 36, 18, 18, 0, 40, 4, 42, 10, 20, 22, 46, 0, 48, 24, 24, 12, 52, 12, 22, 6, 56, 28, 58, 6, 60, 30, 14, 0, 64, 32, 66, 16, 68, 34, 70, 8, 72, 36, 16, 18, 12, 18, 78, 0, 80, 40, 82, 4, 40, 42, 42, 10
Offset: 1

Views

Author

Antti Karttunen, Sep 07 2023

Keywords

Crossrefs

Cf. A005940, A364500, A341520, A365430, A365431 (rgs-transform).

Programs

  • PARI
    A156552(n) = {my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); t };
    A364502(n) = { my(u=A005940(n)); (u / gcd(n, u)); };
    A365432(n) = A156552(A364502(n));

Formula

For all n >= 1, a(n) <= n-1 and A341520(a(n), A365430(n)) = n-1.

A365715 Lexicographically earliest infinite sequence such that a(i) = a(j) => A365465(i) = A365465(j) for all i, j >= 1, where A365465(n) = A356867(n) / gcd(n, A356867(n)), and A356867 is Sycamore's Doudna variant D(3).

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 4, 1, 1, 5, 6, 2, 7, 4, 3, 7, 8, 1, 9, 5, 4, 10, 11, 1, 3, 8, 1, 12, 13, 5, 14, 12, 6, 9, 15, 2, 16, 16, 7, 9, 17, 4, 18, 19, 3, 20, 21, 7, 22, 3, 8, 10, 23, 1, 5, 14, 9, 24, 25, 5, 26, 27, 4, 28, 29, 10, 30, 31, 11, 10, 32, 1, 33, 21, 3, 34, 35, 8, 36, 15, 1, 37, 38, 12, 37, 38, 13, 39, 40, 5, 1
Offset: 1

Views

Author

Antti Karttunen, Sep 17 2023

Keywords

Comments

Restricted growth sequence transform of A365465.
Compare to the scatter plots of A365431 (analogous sequence for Doudna variant D(2)), and also of A365393 and A365718.

Crossrefs

Programs

  • PARI
    \\ Needs also program from A356867:
    up_to = 59049; \\ = 3^10.
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A365465(n) = (A356867(n)/gcd(n, A356867(n)));
    v365715 = rgs_transform(vector(up_to,n,A365465(n)));
    A365715(n) = v365715[n];

A365384 Lexicographically earliest infinite sequence such that a(i) = a(j) => A351251(i) = A351251(j) for all i, j >= 0, where A351251(n) is the denominator of n / A276086(n).

Original entry on oeis.org

1, 2, 3, 2, 4, 5, 6, 7, 8, 7, 4, 9, 10, 11, 12, 7, 13, 14, 15, 16, 12, 16, 17, 18, 19, 11, 20, 21, 22, 23, 24, 25, 26, 25, 27, 5, 28, 29, 30, 29, 27, 31, 10, 32, 33, 29, 34, 35, 36, 16, 30, 37, 38, 39, 40, 37, 20, 41, 42, 43, 44, 45, 46, 25, 47, 48, 49, 50, 51, 50, 27, 52, 53, 54, 55, 45, 56, 35, 57, 58, 55, 58, 59, 60, 40, 58, 61, 62, 63, 64, 65, 45
Offset: 0

Views

Author

Antti Karttunen, Sep 07 2023

Keywords

Comments

Restricted growth sequence transform of A351251, or equally, of A351253.

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A351251(n) = denominator(n/A276086(n));
    v365384 = rgs_transform(vector(1+up_to,n,A351251(n-1)));
    A365384(n) = v365384[1+n];

A366291 Lexicographically earliest infinite sequence such that a(i) = a(j) => A353271(i) = A353271(j) for all i, j >= 1, where A353271(n) is the numerator of n / A005940(1+(3*A156552(n))).

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 1, 4, 3, 5, 1, 6, 1, 7, 5, 8, 1, 9, 1, 2, 7, 10, 1, 4, 5, 11, 9, 2, 1, 12, 1, 13, 10, 14, 7, 15, 1, 16, 11, 4, 1, 7, 1, 2, 12, 17, 1, 8, 7, 18, 14, 2, 1, 9, 10, 4, 16, 19, 1, 20, 1, 21, 3, 22, 11, 23, 1, 2, 17, 24, 1, 25, 1, 26, 18, 2, 10, 27, 1, 8, 28, 29, 1, 30, 14, 31, 19, 4, 1, 32, 11, 2, 21, 33, 16
Offset: 1

Views

Author

Antti Karttunen, Oct 06 2023

Keywords

Comments

Restricted growth sequence transform of A353271.
For all i, j: A305800(i) = A305800(j) => a(i) = a(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    
  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
    A156552(n) = { my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res };
    A332449(n) = A005940(1+(3*A156552(n)));
    A353271(n) = (n / gcd(n, A332449(n)));
    v366291 = rgs_transform(vector(up_to,n,A353271(n)));
    A366291(n) = v366291[n];
Showing 1-7 of 7 results.