cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365435 Position of A002110(n) in A005117.

Original entry on oeis.org

1, 2, 5, 19, 129, 1405, 18262, 310347, 5896728, 135624240, 3933101824, 121926157641, 4511267827532, 184961980943493, 7953365180610401, 373808163488684050, 19811832664899731266, 1168898127229083969893, 71302785760974119699474
Offset: 0

Views

Author

Michael De Vlieger, Nov 19 2023

Keywords

Comments

Primorial A002110(n) is the a(n)-th squarefree number.

Examples

			Let b(n) = A002110(n) and c(n) = A005117(n).
a(0) = 1 since b(0) = 1, and c(1) = 1.
a(1) = 2 since b(1) = 2 = c(2).
a(2) = 5 since b(2) = 6 = c(5).
a(3) = 19 since b(3) = 30 = c(19), etc.
		

Crossrefs

Programs

  • Mathematica
    s = Select[Range[2^20], SquareFreeQ]; Map[FirstPosition[s, #][[1]] &, FoldList[Times, 1, Prime@ Range[7]] ]
  • PARI
    A071172(n) = my(s); forsquarefree(d=1, sqrtint(n), s += n\d[1]^2 * moebius(d)); s; \\ Charles R Greathouse IV at A071172
    a(n) = my(p = prod(i = 1, n, prime(i))); A071172(p); \\ Amiram Eldar, Nov 19 2023
    
  • Python
    from math import isqrt
    from sympy import primorial, mobius
    def A365435(n):
        if n == 0: return 1
        p = primorial(n)
        return sum(mobius(k)*(p//k**2) for k in range(1,isqrt(p)+1)) # Chai Wah Wu, Aug 12 2024

Extensions

a(8)-a(16) from Amiram Eldar, Nov 19 2023
a(17) from Chai Wah Wu, Aug 12 2024
a(18) from Chai Wah Wu, Aug 13 2024