A365443 Triangle read by rows: T(n,s) is the numerator of the probability that the sum s occurs when repeated rolls of an n-sided die are summed for s = 0..2n.
1, 1, 1, 1, 1, 1, 3, 5, 11, 1, 1, 4, 16, 37, 121, 376, 1, 1, 5, 25, 125, 369, 1589, 6665, 26925, 1, 1, 6, 36, 216, 1296, 4651, 24781, 129936, 667116, 3327696, 1, 1, 7, 49, 343, 2401, 16807, 70993, 450295, 2825473, 17492167, 106442161, 633074071, 1, 1, 8, 64
Offset: 0
Examples
Triangle begins: 0 | 1 1 | 1 1 1 2 | 1 1 3 5 11 3 | 1 1 4 16 37 121 376 4 | 1 1 5 25 125 369 1589 6665 26925 5 | 1 1 6 36 216 1296 4651 24781 129936 667116 3327696
Links
- Alois P. Heinz, Rows n = 0..100, flattened
Programs
-
Maple
b:= proc(n, s) option remember; `if`(s=0, 1, add(b(n, s-j)/n, j=1..min(s, n))) end: T:= (n, s)-> numer(b(n, s)): seq(seq(T(n,s), s=0..2*n), n=0..7); # Alois P. Heinz, Apr 01 2025
-
Mathematica
A365443[n_, s_] := If[s == 0, 1, (n+1)^(s-1) - If[s > n, (n+1)^(s-n-2)*s*n^n, 0]]; Table[A365443[n, s], {n, 0, 6}, {s, 0, 2*n}] (* Paolo Xausa, Apr 02 2025 *)
-
Python
def Pn(n,s): # probability numerator of rolling s with an n-sided die if s==0: return 1 elif s>n: return int((n+1)**(s-n-2)*(n*(n+1)**n-n**n*s+(n+1)**n)) else: return (n+1)**(s-1) [Pn(n,s) for n in range(10) for s in range(2*n+1)]
Formula
T(n,s) = 1 for s = 0,
(n+1)^(s-1) for 0 < s <= n,
(n+1)^(s-1) - (n+1)^(s-n-2)*s*n^n for n < s <= 2n.
Comments