A365467 Lexicographically earliest infinite sequence such that a(i) = a(j) => A336467(i) = A336467(j) and A336467(A163511(i)) = A336467(A163511(j)) for all i, j >= 1, where A336467 is fully multiplicative with a(2) = 1 and a(p) = oddpart(p+1) for odd primes p.
1, 1, 1, 1, 2, 1, 3, 1, 1, 2, 4, 1, 5, 3, 2, 1, 6, 1, 7, 2, 8, 4, 2, 1, 9, 5, 3, 3, 10, 2, 3, 1, 2, 6, 11, 1, 12, 7, 13, 2, 14, 8, 15, 4, 2, 2, 4, 1, 3, 9, 16, 5, 17, 3, 9, 3, 18, 10, 19, 2, 20, 3, 21, 1, 22, 2, 23, 6, 11, 11, 6, 1, 24, 12, 9, 7, 2, 13, 7, 2, 8, 14, 14, 8, 17, 15, 19, 4, 25, 2, 26, 2, 8, 4, 27, 1, 28, 3
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
PARI
up_to = 65537; rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; }; A000265(n) = (n>>valuation(n,2)); A163511(n) = if(!n, 1, my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p)); A336467(n) = { my(f=factor(n)); prod(k=1,#f~,if(2==f[k,1],1,(A000265(f[k,1]+1))^f[k,2])); }; A365467aux(n) = [A336467(n), A336467(A163511(n))]; v365467 = rgs_transform(vector(up_to,n,A365467aux(n))); A365467(n) = v365467[n];
Comments