A365481 The sum of unitary divisors of the smallest number whose square is divisible by n.
1, 3, 4, 3, 6, 12, 8, 5, 4, 18, 12, 12, 14, 24, 24, 5, 18, 12, 20, 18, 32, 36, 24, 20, 6, 42, 10, 24, 30, 72, 32, 9, 48, 54, 48, 12, 38, 60, 56, 30, 42, 96, 44, 36, 24, 72, 48, 20, 8, 18, 72, 42, 54, 30, 72, 40, 80, 90, 60, 72, 62, 96, 32, 9, 84, 144, 68, 54, 96
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[p_, e_] := p^Ceiling[e/2] + 1; a[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; Array[a, 100]
-
PARI
a(n) = {my(f = factor(n)); prod(i=1, #f~, f[i,1]^ceil(f[i,2]/2) + 1);}
-
Python
from math import prod from sympy import factorint def A365481(n): return prod(p**((e>>1)+(e&1))+1 for p,e in factorint(n).items()) # Chai Wah Wu, Sep 05 2023
Formula
Multiplicative with a(p^e) = p^(ceiling(e/2)) + 1.
Dirichlet g.f.: zeta(s) * zeta(2*s-1) * Product_{p prime} (1 + 1/p^(s-1) - 1/p^(2*s-1) - 1/p^(3*s-1)).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * zeta(2) * zeta(3) * Product_{p prime} (1 - 1/p^2 - 1/p^3 + 1/p^4 - 1/p^5 + 1/p^6) = 0.515959523197... .
Comments