cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365487 The number of divisors of the largest cube dividing n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 4, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 4, 1, 4, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 4, 4, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Sep 05 2023

Keywords

Comments

The number of divisors of the cube root of the largest cube dividing n, A053150(n), is A061704(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 3*Floor[e/3] + 1; a[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> 3*(x\3) + 1, factor(n)[, 2]));

Formula

a(n) = A000005(A008834(n)).
Multiplicative with a(p^e) = 3*floor(e/3) + 1.
a(n) = 1 if and only if n is cubefree (A004709).
a(n) <= A000005(n) with equality if and only if n is a cube (A000578).
Dirichlet g.f.: zeta(s) * zeta(3*s) * Product_{p prime} (1 + 2/p^(3*s)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(3) * Product_{p prime} (1 + 2/p^3) = 1.6552343865608... .