cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365490 The number of divisors of the largest 4th power dividing n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 5, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Sep 05 2023

Keywords

Comments

The number of divisors of the 4th root of the largest 4th power dividing n, A053164(n), is A063775(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 4*Floor[e/4] + 1; a[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> 4*(x\4) + 1, factor(n)[, 2]));
    
  • Python
    from math import prod
    from sympy import factorint
    def A365490(n): return prod(e&-4|1 for e in factorint(n).values()) # Chai Wah Wu, Aug 08 2024

Formula

a(n) = A000005(A008835(n)).
Multiplicative with a(p^e) = 4*floor(e/4) + 1.
a(n) = 1 if and only if n is a biquadratefree number (A046100).
a(n) <= A000005(n) with equality if and only if n is a fourth power (A000583).
Dirichlet g.f.: zeta(s) * zeta(4*s) * Product_{p prime} (1 + 3/p^(4*s)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(4) * Product_{p prime} (1 + 3/p^4) = 1.3414590511076... . In general, the asymptotic mean of the number of divisors of the largest k-th power dividing n is zeta(k) * Product_{p prime} (1 + (k-1)/p^k).