A365490 The number of divisors of the largest 4th power dividing n.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 5, 1, 1, 1, 1, 1, 1
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[p_, e_] := 4*Floor[e/4] + 1; a[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; Array[a, 100]
-
PARI
a(n) = vecprod(apply(x -> 4*(x\4) + 1, factor(n)[, 2]));
-
Python
from math import prod from sympy import factorint def A365490(n): return prod(e&-4|1 for e in factorint(n).values()) # Chai Wah Wu, Aug 08 2024
Formula
Multiplicative with a(p^e) = 4*floor(e/4) + 1.
a(n) = 1 if and only if n is a biquadratefree number (A046100).
Dirichlet g.f.: zeta(s) * zeta(4*s) * Product_{p prime} (1 + 3/p^(4*s)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(4) * Product_{p prime} (1 + 3/p^4) = 1.3414590511076... . In general, the asymptotic mean of the number of divisors of the largest k-th power dividing n is zeta(k) * Product_{p prime} (1 + (k-1)/p^k).
Comments