A365510 Number of n-vertex binary trees that do not contain 0((00)[0(00)]) as a subtree.
1, 2, 5, 14, 41, 123, 376, 1168, 3678, 11716, 37688, 122261, 399533, 1314023
Offset: 1
Links
- CombOS - Combinatorial Object Server, Generate binary trees
- Michael Dairyko, Lara Pudwell, Samantha Tyner, and Casey Wynn, Non-contiguous pattern avoidance in binary trees, arXiv:1203.0795 [math.CO], 2012.
- Michael Dairyko, Lara Pudwell, Samantha Tyner, and Casey Wynn, Non-contiguous pattern avoidance in binary trees, Electron. J. Combin. 19 (2012), no. 3, Paper 22, 21 pp. MR2967227.
- Petr Gregor, Torsten Mütze, and Namrata, Combinatorial generation via permutation languages. VI. Binary trees, arXiv:2306.08420 [cs.DM], 2023.
- Petr Gregor, Torsten Mütze, and Namrata, Pattern-Avoiding Binary Trees-Generation, Counting, and Bijections, Leibniz Int'l Proc. Informatics (LIPIcs), 34th Int'l Symp. Algor. Comp. (ISAAC 2023). See pp. 33.12, 33.13.
- Toufik Mansour and Mark Shattuck, On ascent sequences avoiding 021 and a pattern of length four, arXiv:2507.17947 [math.CO], 2025. See p. 11.
- Eric S. Rowland, Pattern avoidance in binary trees, arXiv:0809.0488 [math.CO], 2008-2010.
- Eric S. Rowland, Pattern avoidance in binary trees, J. Comb. Theory A 117 (6) (2010) 741-758.
Comments