A365512 a(n) is the least odd prime p such that A000120(n*p) = A000120(n) * A000120(p).
3, 3, 5, 3, 3, 5, 17, 3, 3, 3, 17, 5, 17, 17, 17, 3, 3, 3, 5, 3, 3, 17, 257, 5, 5, 17, 257, 17, 257, 17, 257, 3, 3, 3, 5, 3, 3, 5, 257, 3, 3, 3, 257, 17, 17, 257, 257, 5, 5, 5, 5, 17, 257, 257, 257, 17, 257, 257, 257, 17, 257, 257, 257, 3, 3, 3, 5, 3, 3, 5, 257, 3, 3, 3, 17, 5, 257, 257, 257, 3
Offset: 1
Examples
a(3) = 5 because 5 is an odd prime with A000120(3 * 5) = 4 = A000120(3) * A000120(5) while A000120(3 * 3) = 2 < 4 = A000120(3) * A000120(3).
Links
Programs
-
Maple
g:= n -> convert(convert(n,base,2),`+`): f:= proc(n) option remember; local t,S,d,L,B,forbid,i,j,r,q; if n::even then return procname(n/2^padic:-ordp(n,2)) fi; L:= convert(n,base,2); t:= convert(L,`+`); B:= select(t -> L[t]=1, [$1..nops(L)]); forbid:= {seq(seq(B[i]-B[j],j=1..i-1),i=1..nops(B))}; S[0]:= [1]; for d from 1 do S[d]:= NULL; for j from 0 to d-1 do if member(d-j,forbid) then next fi; for r in S[j] do q:= r + 2^d; if g(q*n) = t*g(q) then if isprime(q) then return q fi; S[d]:= S[d], q; fi od od; S[d]:= [S[d]]; od end proc: map(f, [$1..100]);
-
PARI
a(n) = my(p=3, h=hammingweight(n)); while (hammingweight(n*p) != h*hammingweight(p), p = nextprime(p+1)); p; \\ Michel Marcus, Sep 08 2023
Comments