A365517 Numbers k such that the sum of the squarefree part of k and the squarefree kernel of k is a perfect square.
2, 8, 9, 12, 32, 48, 81, 98, 108, 128, 150, 192, 225, 252, 363, 392, 432, 512, 578, 600, 729, 768, 972, 1008, 1100, 1225, 1350, 1568, 1728, 1805, 1922, 2025, 2028, 2048, 2268, 2312, 2366, 2400, 2940, 3072, 3174, 3267, 3750, 3888, 4032, 4400, 4802, 5400, 5625
Offset: 1
Keywords
Examples
108 is a term because A007913(108) = 3, A007947(108) = 6 and 3 + 6 = 9. Let c, r denote the core and the rad (kernel) respectively, of any number, then for m >= 0, 2^(2*m+1) is a term (c = r = 2)-->4 (2,8,32,128,...). For m >= 1, h > 0, 2^(2*m)*3^(2*h+1) is a term (c = 6, r = 3)-->9 (12,48,108,...).
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..3140 (all terms less than or equal to 2^28.)
Programs
-
Mathematica
squareFreePart[n_Integer?Positive] := squareFreePart[n] = n/Times @@ (First[#]^(2*Floor[Last[#]/2]) & /@ FactorInteger[n]); squareFreeKernel[n_Integer?Positive] := squareFreeKernel[n] = Times @@ (First[#] & /@ FactorInteger[n]); a[max_Integer?Positive] := a[max] = Select[Range[max], IntegerQ@Sqrt[squareFreePart[#] + squareFreeKernel[#]] &]; a[5625] (* Robert P. P. McKone, Sep 07 2023 *)
-
PARI
isok(s) = issquare(core(s) + factorback(factorint(s)[, 1])); \\ Michel Marcus, Sep 08 2023
-
Python
from itertools import count, islice from sympy.ntheory.primetest import is_square from sympy import factorint def A365517_gen(startvalue=1): # generator of terms >= startvalue for k in count(max(startvalue,1)): a, b = 1, 1 for p, e in factorint(k).items(): if e&1: a *= p else: b *= p if is_square(a*(b+1)): yield k A365517_list = list(islice(A365517_gen(),30)) # Chai Wah Wu, Sep 19 2023
Comments