A365522 Decimal expansion of (Pi*sqrt(3) + 9*log(3))/24.
6, 3, 8, 7, 0, 4, 5, 2, 8, 7, 7, 9, 8, 1, 8, 3, 6, 5, 5, 9, 7, 4, 7, 6, 7, 4, 6, 0, 5, 1, 2, 1, 6, 6, 0, 5, 7, 7, 8, 3, 1, 7, 2, 4, 0, 1, 9, 5, 1, 2, 3, 6, 1, 6, 3, 4, 6, 7, 4, 5, 9, 9, 2, 0, 3, 7, 5, 7, 5, 7, 5, 7, 5, 9, 7, 7, 7, 2, 5, 9, 8, 0, 3, 8, 1, 2, 1, 5, 3, 1, 5, 8, 1, 6, 5, 7, 0, 5, 4, 4, 0, 2, 5, 1, 6, 5, 6, 2, 7, 0, 9, 8, 6, 7, 5
Offset: 0
Examples
0.63870452877981836559747674605121660577831724019512...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- Michael Ian Shamos, A catalog of the real numbers (2011), p. 544.
- Wikipedia, Polygonal number.
Crossrefs
Programs
-
Magma
SetDefaultRealField(RealField(139)); R:= RealField(); (Pi(R)*Sqrt(3)+9*Log(3))/24; // G. C. Greubel, Mar 24 2024
-
Mathematica
RealDigits[(Pi*Sqrt[3] + 9*Log[3])/24, 10 , 100][[1]] (* Amiram Eldar, Sep 08 2023 *)
-
PARI
(Pi*sqrt(3)+9*log(3))/24
-
SageMath
numerical_approx((pi*sqrt(3)+9*log(3))/24, digits=139) # G. C. Greubel, Mar 24 2024
Formula
Equals Sum_{k>=1} 1/(6*k^2 - 4*k) = A244645/2 [Shamos].
Equals - Integral_{x=0..1} log(1-x^6)/x^5 dx [Shamos].
Comments