A365539 Array read by ascending antidiagonals: A(n,k) = [x^n] (1 + x^k)/((1 - x)^2*(1 - x^k)), with k > 0.
1, 4, 1, 9, 2, 1, 16, 5, 2, 1, 25, 8, 3, 2, 1, 36, 13, 6, 3, 2, 1, 49, 18, 9, 4, 3, 2, 1, 64, 25, 12, 7, 4, 3, 2, 1, 81, 32, 17, 10, 5, 4, 3, 2, 1, 100, 41, 22, 13, 8, 5, 4, 3, 2, 1, 121, 50, 27, 16, 11, 6, 5, 4, 3, 2, 1, 144, 61, 34, 21, 14, 9, 6, 5, 4, 3, 2, 1
Offset: 0
Examples
Array begins: 1, 1, 1, 1, 1, 1, 1, ... 4, 2, 2, 2, 2, 2, 2, ... 9, 5, 3, 3, 3, 3, 3, ... 16, 8, 6, 4, 4, 4, 4, ... 25, 13, 9, 7, 5, 5, 5, ... 36, 18, 12, 10, 8, 6, 6, ... 49, 25, 17, 13, 11, 9, 7, ... 64, 32, 22, 16, 14, 12, 10, ... ...
Crossrefs
Programs
-
Mathematica
A[n_,k_]:=SeriesCoefficient[(1+x^k)/((1-x)^2*(1-x^k)),{x,0,n}]; Table[A[n-k,k],{n,0,12},{k,n}]//Flatten