A365543 Triangle read by rows where T(n,k) is the number of integer partitions of n with a submultiset summing to k.
1, 1, 1, 2, 1, 2, 3, 2, 2, 3, 5, 3, 3, 3, 5, 7, 5, 5, 5, 5, 7, 11, 7, 8, 6, 8, 7, 11, 15, 11, 11, 11, 11, 11, 11, 15, 22, 15, 17, 15, 14, 15, 17, 15, 22, 30, 22, 23, 23, 22, 22, 23, 23, 22, 30, 42, 30, 33, 30, 33, 25, 33, 30, 33, 30, 42
Offset: 0
Examples
Triangle begins: 1 1 1 2 1 2 3 2 2 3 5 3 3 3 5 7 5 5 5 5 7 11 7 8 6 8 7 11 15 11 11 11 11 11 11 15 22 15 17 15 14 15 17 15 22 30 22 23 23 22 22 23 23 22 30 42 30 33 30 33 25 33 30 33 30 42 56 42 45 44 44 43 43 44 44 45 42 56 77 56 62 58 62 56 53 56 62 58 62 56 77 Row n = 6 counts the following partitions: (6) (51) (42) (33) (42) (51) (6) (51) (411) (411) (321) (411) (411) (51) (42) (321) (321) (3111) (321) (321) (42) (411) (3111) (3111) (2211) (3111) (3111) (411) (33) (2211) (222) (21111) (222) (2211) (33) (321) (21111) (2211) (111111) (2211) (21111) (321) (3111) (111111) (21111) (21111) (111111) (3111) (222) (111111) (111111) (222) (2211) (2211) (21111) (21111) (111111) (111111)
Links
- Robert Price, Table of n, a(n) for n = 0..324
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],MemberQ[Total/@Subsets[#],k]&]],{n,0,15},{k,0,n}]
Comments