A365545 Triangle read by rows where T(n,k) is the number of strict integer partitions of n with exactly k distinct non-subset-sums.
1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 3, 0, 1, 0, 0, 1, 1, 0, 0, 3, 0, 1, 0, 0, 0, 3, 0, 0, 0, 4, 0, 1, 0, 1, 0, 0, 2, 2, 0, 0, 4, 0, 1, 0, 1, 0, 0, 0, 5, 0, 0, 0, 5, 0, 1, 0, 2, 0, 0, 0, 0, 5, 2, 0, 0, 5, 0, 1, 0
Offset: 0
Examples
Triangle begins: 1 1 0 0 1 0 1 0 1 0 0 1 0 1 0 0 0 2 0 1 0 1 0 0 2 0 1 0 1 0 0 0 3 0 1 0 0 1 1 0 0 3 0 1 0 0 0 3 0 0 0 4 0 1 0 1 0 0 2 2 0 0 4 0 1 0 1 0 0 0 5 0 0 0 5 0 1 0 2 0 0 0 0 5 2 0 0 5 0 1 0 2 0 1 0 0 0 8 0 0 0 6 0 1 0 1 1 3 0 0 0 0 7 3 0 0 6 0 1 0 2 0 4 0 1 0 0 0 12 0 0 0 7 0 1 0 1 1 2 2 3 1 0 0 0 11 3 0 0 7 0 1 0 2 0 3 0 7 0 1 0 0 0 16 0 0 0 8 0 1 0 3 0 0 2 6 3 3 1 0 0 0 15 4 0 0 8 0 1 0 Row n = 12: counts the following partitions: (6,3,2,1) . . . . (9,2,1) (6,5,1) . . (11,1) . (12) . (5,4,2,1) (8,3,1) (6,4,2) (10,2) (7,4,1) (9,3) (7,3,2) (8,4) (5,4,3) (7,5)
Crossrefs
The complement (positive subset-sums) is also A365545 with rows reversed.
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Length[Complement[Range[n], Total/@Subsets[#]]]==k&]],{n,0,10},{k,0,n}]
Comments