A365549 The number of exponentially odd divisors of the square root of the largest square dividing n.
1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[p_, e_] := 2 + Floor[(e-2)/4]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
PARI
a(n) = vecprod(apply(x -> 2 + (x-2)\4, factor(n)[, 2]));
Formula
a(n) >= 1 with equality if and only if n is squarefree (A005117).
Multiplicative with a(p^e) = 2 + floor((e-2)/4).
Dirichlet g.f.: zeta(s) * zeta(4*s) * Product_{p prime} (1 + 1/p^(2*s) - 1/p^(4*s)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(4) * Product_{p prime} (1 + 1/p^2 - 1/p^4) = 1.54211628314015874165... .
Comments