A365607 Number of degree 3 vertices in the n-Sierpinski carpet graph.
0, 40, 328, 2536, 19912, 158056, 1260616, 10073320, 80551624, 644308072, 5154149704, 41232252904, 329855188936, 2638833008488, 21110638558792, 168885031942888, 1351080025960648, 10808639518937704, 86469114085259080, 691752906483344872, 5534023233270575560, 44272185810376054120
Offset: 1
Examples
The level 1 Sierpinski carpet graph is an 8-cycle, which has 8 degree 2 vertices and 0 degree 3 or 4 vertices. Thus a(1) = 0.
Links
- Paolo Xausa, Table of n, a(n) for n = 1..1000
- Allan Bickle, Degrees of Menger and Sierpinski Graphs, Congr. Num. 227 (2016) 197-208.
- Allan Bickle, MegaMenger Graphs, The College Mathematics Journal, 49 1 (2018) 20-26.
- Eric Weisstein's World of Mathematics, SierpiĆski Carpet Graph
- Index entries for linear recurrences with constant coefficients, signature (12,-35,24).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{12,-35,24},{0,40,328},30] (* Paolo Xausa, Oct 16 2023 *)
-
Python
def A365607(n): return ((3<<3*n)+(3**(n-1)<<4))//5-8 # Chai Wah Wu, Nov 27 2023
Comments