A365608 Number of degree 4 vertices in the n-Sierpinski carpet graph.
0, 4, 100, 1060, 9316, 77092, 624484, 5019172, 40223332, 321996580, 2576602468, 20614709284, 164923342948, 1319403749668, 10555281015652, 84442401180196, 675539668606564, 5404318726347556, 43234553943265636, 345876443943580708, 2767011588741012580, 22136092821505201444, 177088742906772914020
Offset: 1
Examples
The level 1 Sierpinski carpet graph is an 8-cycle, which has 8 degree 2 vertices and 0 degree 3 or 4 vertices. Thus a(1) = 0.
Links
- Paolo Xausa, Table of n, a(n) for n = 1..1000
- Allan Bickle, Degrees of Menger and Sierpinski Graphs, Congr. Num. 227 (2016) 197-208.
- Allan Bickle, MegaMenger Graphs, The College Mathematics Journal, 49 1 (2018) 20-26.
- Eric Weisstein's World of Mathematics, SierpiĆski Carpet Graph
- Index entries for linear recurrences with constant coefficients, signature (12,-35,24).
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{12,-35,24},{0,4,100},30] (* Paolo Xausa, Oct 16 2023 *)
-
Python
def A365608(n): return ((3<<3*n-1)-(3**(n-1)<<5))//5+4 # Chai Wah Wu, Nov 27 2023
Comments