cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365623 T(n,k) is the number of parking functions of length n with cars parking at most k spots away from their preferred spot; square array T(n,k), n>=0, k>=0, read by downward antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 3, 6, 1, 1, 3, 13, 24, 1, 1, 3, 16, 75, 120, 1, 1, 3, 16, 109, 541, 720, 1, 1, 3, 16, 125, 918, 4683, 5040, 1, 1, 3, 16, 125, 1171, 9277, 47293, 40320, 1, 1, 3, 16, 125, 1296, 12965, 109438, 545835, 362880, 1, 1, 3, 16, 125, 1296, 15511, 166836, 1475691, 7087261, 3628800
Offset: 0

Views

Author

Keywords

Examples

			Square array T(n,k) begins:
    1,    1,    1,     1,     1,     1,     1, ...
    1,    1,    1,     1,     1,     1,     1, ...
    2,    3,    3,     3,     3,     3,     3, ...
    6,   13,   16,    16,    16,    16,    16, ...
   24,   75,  109,   125,   125,   125,   125, ...
  120,  541,  918,  1171,  1296,  1296,  1296, ...
  720, 4683, 9277, 12965, 15511, 16807, 16807, ...
  ...
		

Crossrefs

Columns k=0..1, 3..4 give: A000142, A000670, A365626, A365627.
Main diagonal gives A000272(n+1).
Cf. A264902.

Programs

  • Maple
    T:= proc(n, k) option remember; `if`(n=0, 1, add(min(i+1, k+1)*
           binomial(n-1, i)*T(i, k)*T(n-1-i, k), i=0..n-1))
        end:
    seq(seq(T(n, d-n), n=0..d), d=0..10);  # Alois P. Heinz, Sep 13 2023

Formula

T(n,k) = Sum_{i=0..n-1} binomial(n-1,i) * min(i+1,k+1) * T(i,k) * T(n-1-i,k) for n>0, T(0,k) = 1.