A365623 T(n,k) is the number of parking functions of length n with cars parking at most k spots away from their preferred spot; square array T(n,k), n>=0, k>=0, read by downward antidiagonals.
1, 1, 1, 1, 1, 2, 1, 1, 3, 6, 1, 1, 3, 13, 24, 1, 1, 3, 16, 75, 120, 1, 1, 3, 16, 109, 541, 720, 1, 1, 3, 16, 125, 918, 4683, 5040, 1, 1, 3, 16, 125, 1171, 9277, 47293, 40320, 1, 1, 3, 16, 125, 1296, 12965, 109438, 545835, 362880, 1, 1, 3, 16, 125, 1296, 15511, 166836, 1475691, 7087261, 3628800
Offset: 0
Examples
Square array T(n,k) begins: 1, 1, 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, 1, 1, ... 2, 3, 3, 3, 3, 3, 3, ... 6, 13, 16, 16, 16, 16, 16, ... 24, 75, 109, 125, 125, 125, 125, ... 120, 541, 918, 1171, 1296, 1296, 1296, ... 720, 4683, 9277, 12965, 15511, 16807, 16807, ... ...
Crossrefs
Programs
-
Maple
T:= proc(n, k) option remember; `if`(n=0, 1, add(min(i+1, k+1)* binomial(n-1, i)*T(i, k)*T(n-1-i, k), i=0..n-1)) end: seq(seq(T(n, d-n), n=0..d), d=0..10); # Alois P. Heinz, Sep 13 2023
Formula
T(n,k) = Sum_{i=0..n-1} binomial(n-1,i) * min(i+1,k+1) * T(i,k) * T(n-1-i,k) for n>0, T(0,k) = 1.