cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365635 The largest divisor of n that is a term of A048102.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 27, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 27, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 1, 1, 1, 4, 27, 1, 1, 4, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Sep 14 2023

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^If[e < p, 0, p]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2] < f[i,1], 1, f[i, 1]^f[i,1]));}

Formula

Multiplicative with a(p^e) = 1 if e < p and p^p otherwise.
a(n) <= n with equality if and only if n is in A048102.
a(n) >= 1 with equality if and only if n is in A048103.
Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + (p^p-1)/p^(p*s)).