A365661 Triangle read by rows where T(n,k) is the number of strict integer partitions of n with a submultiset summing to k.
1, 1, 1, 1, 0, 1, 2, 1, 1, 2, 2, 1, 0, 1, 2, 3, 1, 1, 1, 1, 3, 4, 2, 2, 1, 2, 2, 4, 5, 2, 2, 2, 2, 2, 2, 5, 6, 3, 2, 3, 1, 3, 2, 3, 6, 8, 3, 3, 4, 3, 3, 4, 3, 3, 8, 10, 5, 4, 5, 4, 3, 4, 5, 4, 5, 10, 12, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 12
Offset: 0
Examples
Triangle begins: 1 1 1 1 0 1 2 1 1 2 2 1 0 1 2 3 1 1 1 1 3 4 2 2 1 2 2 4 5 2 2 2 2 2 2 5 6 3 2 3 1 3 2 3 6 8 3 3 4 3 3 4 3 3 8 Row n = 6 counts the following strict partitions: (6) (5,1) (4,2) (3,2,1) (4,2) (5,1) (6) (5,1) (3,2,1) (3,2,1) (3,2,1) (3,2,1) (5,1) (4,2) (4,2) (3,2,1) (3,2,1) Row n = 10 counts the following strict partitions: A 91 82 73 64 532 64 73 82 91 A 64 541 532 532 541 541 541 532 532 541 64 73 631 721 631 631 4321 631 631 721 631 73 82 721 4321 721 4321 4321 721 4321 721 82 91 4321 4321 4321 4321 91 532 532 541 541 631 631 721 721 4321 4321
Links
- Robert Price, Table of n, a(n) for n = 0..1325
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Select[IntegerPartitions[n], UnsameQ@@#&], MemberQ[Total/@Subsets[#],k]&]], {n,0,10},{k,0,n}]
Comments