A365663 Triangle read by rows where T(n,k) is the number of strict integer partitions of n without a subset summing to k.
1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 3, 5, 3, 4, 3, 5, 5, 4, 5, 5, 4, 5, 5, 5, 6, 5, 6, 7, 6, 5, 6, 5, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 9, 8, 8, 8, 11, 8, 8, 8, 9, 8, 10, 11, 10, 10, 10, 10, 10, 10, 10, 10, 11, 10, 12, 13, 11, 13, 11, 12, 15, 12, 11, 13, 11, 13, 12
Offset: 2
Examples
Triangle begins: 1 1 1 1 2 1 2 2 2 2 2 2 3 2 2 3 3 3 3 3 3 3 4 3 5 3 4 3 5 5 4 5 5 4 5 5 5 6 5 6 7 6 5 6 5 7 7 7 7 7 7 7 7 7 7 8 9 8 8 8 11 8 8 8 9 8 Row n = 8 counts the following strict partitions: (8) (8) (8) (8) (8) (8) (8) (6,2) (7,1) (7,1) (7,1) (7,1) (7,1) (6,2) (5,3) (5,3) (6,2) (6,2) (6,2) (5,3) (5,3) (4,3,1) (5,3) (4,3,1) (5,2,1)
Links
- Robert Price, Table of n, a(n) for n = 2..1226
- P. Erdős, J. L. Nicolas and A. Sárközy, On the number of partitions of n without a given subsum (I), Discrete Math., 75 (1989), 155-166 = Annals Discrete Math. Vol. 43, Graph Theory and Combinatorics 1988, ed. B. Bollobas.
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&FreeQ[Total/@Subsets[#],k]&]], {n,2,15},{k,1,n-1}]
Comments