cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365664 Expansion of Sum_{0

Original entry on oeis.org

1, 3, 9, 22, 51, 97, 188, 330, 568, 918, 1452, 2233, 3344, 4884, 7004, 9856, 13653, 18699, 25080, 33462, 43918, 57304, 73668, 94482, 119262, 150285, 187231, 232560, 285660, 350746, 425627, 516477, 620731, 745503, 887796, 1056669, 1247521, 1472460, 1726054, 2021327
Offset: 10

Views

Author

Seiichi Manyama, Sep 15 2023

Keywords

Comments

Number of partitions of n with four designated summands. For example: a(11) = 3 because there are three partitions of 11 with four designated summands: [5'+ 3'+ 2'+ 1'], [4'+ 3'+ 2'+ 1'+ 1], [4'+ 3'+ 2'+ 1 + 1']. - Omar E. Pol, Jul 26 2025

Crossrefs

A diagonal of A060043.
Column k=4 of A385001.

Programs

  • Mathematica
    a[n_] := Module[{d = DivisorSigma[{1, 3, 5, 7}, n]}, (5*d[[4]] - (126*n-441)*d[[3]] + (756*n^2-4410*n+4935)*d[[2]] - (840*n^3-5880*n^2+9870*n-3229)*d[[1]])/967680]; Array[a, 40, 10] (* Amiram Eldar, Jan 07 2025 *)
  • PARI
    a(n) = (5*sigma(n, 7)-(126*n-441)*sigma(n, 5)+(756*n^2-4410*n+4935)*sigma(n, 3)-(840*n^3-5880*n^2+9870*n-3229)*sigma(n))/967680; \\ Seiichi Manyama, Jul 24 2024

Formula

G.f.: (1/9) * ( Sum_{k>=4} (-1)^k * (2*k+1) * binomial(k+4,8) * q^(k*(k+1)/2) ) / ( Sum_{k>=0} (-1)^k * (2*k+1) * q^(k*(k+1)/2) ).
a(n) = (5*sigma_7(n) - (126*n-441)*sigma_5(n) + (756*n^2-4410*n+4935)*sigma_3(n) - (840*n^3-5880*n^2+9870*n-3229)*sigma(n))/967680. - Seiichi Manyama, Jul 24 2024
Sum_{k=1..n} a(k) ~ Pi^8 * n^8 / (8!*9!). - Vaclav Kotesovec, Aug 01 2025