A365715 Lexicographically earliest infinite sequence such that a(i) = a(j) => A365465(i) = A365465(j) for all i, j >= 1, where A365465(n) = A356867(n) / gcd(n, A356867(n)), and A356867 is Sycamore's Doudna variant D(3).
1, 1, 1, 2, 3, 1, 4, 1, 1, 5, 6, 2, 7, 4, 3, 7, 8, 1, 9, 5, 4, 10, 11, 1, 3, 8, 1, 12, 13, 5, 14, 12, 6, 9, 15, 2, 16, 16, 7, 9, 17, 4, 18, 19, 3, 20, 21, 7, 22, 3, 8, 10, 23, 1, 5, 14, 9, 24, 25, 5, 26, 27, 4, 28, 29, 10, 30, 31, 11, 10, 32, 1, 33, 21, 3, 34, 35, 8, 36, 15, 1, 37, 38, 12, 37, 38, 13, 39, 40, 5, 1
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..59049
Programs
-
PARI
\\ Needs also program from A356867: up_to = 59049; \\ = 3^10. rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; }; A365465(n) = (A356867(n)/gcd(n, A356867(n))); v365715 = rgs_transform(vector(up_to,n,A365465(n))); A365715(n) = v365715[n];
Comments