cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365770 Expansion of g.f. A(x,y) satisfying A(x,y) = 1 + x*A(x,y)/(1 - x*y * A(x,y))^2, as a triangle of coefficients T(n,k) of x^n*y^k in A(x,y), read by rows n >= 0.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 6, 3, 0, 1, 12, 20, 4, 0, 1, 20, 70, 50, 5, 0, 1, 30, 180, 280, 105, 6, 0, 1, 42, 385, 1050, 882, 196, 7, 0, 1, 56, 728, 3080, 4620, 2352, 336, 8, 0, 1, 72, 1260, 7644, 18018, 16632, 5544, 540, 9, 0, 1, 90, 2040, 16800, 57330, 84084, 51480, 11880, 825, 10, 0, 1, 110, 3135, 33660, 157080, 336336, 330330, 141570, 23595, 1210, 11, 0
Offset: 0

Views

Author

Paul D. Hanna, Oct 10 2023

Keywords

Comments

A365771(n) = T(2*n,n), the central terms.
A109081(n) = Sum_{k=0..n} T(n,k), the row sums.
A365772(n) = Sum_{k=0..n} T(n,k) * 2^k.
A365773(n) = Sum_{k=0..n} T(n,k) * 3^k.
A365774(n) = Sum_{k=0..n} T(n,k) * 4^k.
A365775(n) = Sum_{k=0..n} T(n,k) * 5^k.
Related identities which hold formally for all Maclaurin series F(x):
(1) F(x) = (1/x) * Sum{n>=1} n^(n-1) * x^n * F(x)^n / (1 + n*x*F(x))^(n+1),
(2) F(x) = (2/x) * Sum{n>=1} n*(n+1)^(n-2) * x^n * F(x)^n / (1 + (n+1)*x*F(x))^(n+1),
(3) F(x) = (3/x) * Sum{n>=1} n*(n+2)^(n-2) * x^n * F(x)^n / (1 + (n+2)*x*F(x))^(n+1),
(4) F(x) = (4/x) * Sum{n>=1} n*(n+3)^(n-2) * x^n * F(x)^n / (1 + (n+3)*x*F(x))^(n+1),
(5) F(x) = (k/x) * Sum{n>=1} n*(n+k-1)^(n-2) * x^n * F(x)^n / (1 + (n+k-1)*x*F(x))^(n+1) for all fixed nonzero k.

Examples

			G.f.: A(x,y) = 1 + x + (1 + 2*y)*x^2 + (1 + 6*y + 3*y^2)*x^3 + (1 + 12*y + 20*y^2 + 4*y^3)*x^4 + (1 + 20*y + 70*y^2 + 50*y^3 + 5*y^4)*x^5 + (1 + 30*y + 180*y^2 + 280*y^3 + 105*y^4 + 6*y^5)*x^6 + (1 + 42*y + 385*y^2 + 1050*y^3 + 882*y^4 + 196*y^5 + 7*y^6)*x^7 + (1 + 56*y + 728*y^2 + 3080*y^3 + 4620*y^4 + 2352*y^5 + 336*y^6 + 8*y^7)*x^8 + ...
where
A(x,y) = 1 + x*A(x,y)/(1 - x*y*A(x,y))^2.
Also,
A(x,y) = 1 + 1^0*x*A(x,y)/(1 + (1-y)*x*A(x,y))^2 + 2^1*x^2*A(x,y)^2/(1 + (2-y)*x*A(x,y))^3 + 3^2*x^3*A(x,y)^3/(1 + (3-y)*x*A(x,y))^4 + 4^3*x^4*A(x,y)^4/(1 + (4-y)*x*A(x,y))^5 + 5^4*x^5*A(x,y)^5/(1 + (5-y)*x*A(x,y))^6 + ...
and
A(x,y) = 1 + (1+y)*1*(1+y)^(-1)*x*A(x,y)/(1 + 1*x*A(x,y))^2 + (1+y)*2*(2+y)^0*x^2*A(x,y)^2/(1 + 2*x*A(x,y))^3 + (1+y)*3*(3+y)^1*x^3*A(x,y)^3/(1 + 3*x*A(x,y))^4 + (1+y)*4*(4+y)^2*x^4*A(x,y)^4/(1 + 4*x*A(x,y))^5 + ...
This triangle of coefficients of x^n*y^k in A(x,y) begins:
1;
1, 0;
1, 2, 0;
1, 6, 3, 0;
1, 12, 20, 4, 0;
1, 20, 70, 50, 5, 0;
1, 30, 180, 280, 105, 6, 0;
1, 42, 385, 1050, 882, 196, 7, 0;
1, 56, 728, 3080, 4620, 2352, 336, 8, 0;
1, 72, 1260, 7644, 18018, 16632, 5544, 540, 9, 0;
1, 90, 2040, 16800, 57330, 84084, 51480, 11880, 825, 10, 0; ...
		

Crossrefs

Cf. A109081 (y=1), A365772 (y=2), A365773 (y=3), A365774 (y=4), A365775 (y=5).
Cf. A365771 (central terms).

Programs

  • PARI
    {T(n,k) = binomial(n+1, n-k)/(n+1) * binomial(2*n-k-1, k)}
    for(n=0,10, for(k=0,n, print1(T(n,k),", "));print(""))

Formula

T(n,k) = binomial(n+1, n-k)/(n+1) * binomial(2*n-k-1, k).
G.f. A(x,y) = Sum_{n>=0} Sum_{k=0..n} T(n,k)*x^n*y^k satisfies the following formulas.
(1) A(x,y) = 1 + x*A(x,y)/(1 - x*y*A(x,y))^2.
(2) A(x,y) = (1/x) * Series_Reversion( x/(1 + x/(1 - x*y)^2) ), where reversion is taken wrt x.
(3) A( x/(1 + x/(1 - x*y)^2), y) = 1 + x/(1 - x*y)^2.
(4) A(x,y) = 1 + (1+y) * Sum{n>=1} n*(n+y)^(n-2) * x^n * A(x,y)^n / (1 + n*x*A(x,y))^(n+1).
(5) A(x,y) = 1 + (m+1) * Sum{n>=1} n*(n+m)^(n-2) * x^n * A(x,y)^n / (1 + (n+m-y)*x*A(x,y))^(n+1) for all fixed nonnegative m.
(5.a) A(x,y) = 1 + Sum{n>=1} n^(n-1) * x^n * A(x,y)^n / (1 + (n-y)*x*A(x,y))^(n+1).
(5.b) A(x,y) = 1 + 2 * Sum{n>=1} n*(n+1)^(n-2) * x^n * A(x,y)^n / (1 + (n+1-y)*x*A(x,y))^(n+1).
(5.c) A(x,y) = 1 + 3 * Sum{n>=1} n*(n+2)^(n-2) * x^n * A(x,y)^n / (1 + (n+2-y)*x*A(x,y))^(n+1).
(5.d) A(x,y) = 1 + 4 * Sum{n>=1} n*(n+3)^(n-2) * x^n * A(x,y)^n / (1 + (n+3-y)*x*A(x,y))^(n+1).