A366232
Expansion of e.g.f. A(x) satisfying A(x) = 1 + x*A(x) * exp(2*x*A(x)).
Original entry on oeis.org
1, 1, 6, 54, 728, 13000, 290352, 7800016, 245115264, 8826560640, 358463525120, 16212238054144, 808215885708288, 44035925223746560, 2603618739995621376, 166031767704180111360, 11359670347331723952128, 830065763154102656204800, 64518486557995327748898816
Offset: 0
E.g.f.: A(x) = 1 + x + 6*x^2/2! + 54*x^3/3! + 728*x^4/4! + 13000*x^5/5! + 290352*x^6/6! + 7800016*x^7/7! + 245115264*x^8/8! + ...
where A(x) satisfies A(x) = 1 + x*A(x) * exp(2*x*A(x))
also
A(x) = 1 + 1^0*x*A(x)*exp(+1*x*A(x))/1! + 2^1*x^2*A(x)^2*exp(-0*x*A(x))/2! + 3^2*x^3*A(x)^3*exp(-1*x*A(x))/3! + 4^3*x^4*A(x)^4*exp(-2*x*A(x))/4! + 5^4*x^5*A(x)^5*exp(-3*x*A(x))/5! + 6^5*x^6*A(x)^6*exp(-4*x*A(x))/6! + ...
and
A(x) = 1 + 3*1*3^(-1)*x*A(x)*exp(-1*x*A(x))/1! + 3*2*4^0*x^2*A(x)^2*exp(-2*x*A(x))/2! + 3*3*5^1*x^3*A(x)^3*exp(-3*x*A(x))/3! + 3*4*6^2*x^4*A(x)^4*exp(-4*x*A(x))/4! + 3*5*7^3*x^5*A(x)^5*exp(-5*x*A(x))/5! + ...
RELATED SERIES.
exp(x*A(x)) = 1 + x + 3*x^2/2! + 25*x^3/3! + 313*x^4/4! + 5341*x^5/5! + ... + A212722(n)*x^n/n! + ...
-
nmax = 20; A[] = 0; Do[A[x] = 1 + x*A[x] * E^(2*x*A[x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] * Range[0,nmax]! (* Vaclav Kotesovec, Oct 06 2023 *)
-
/* a(n,m) = coefficient of x^n/n! in A(x)^m, here at m = 1 */
{a(n, m=1) = n!*sum(k=0, n, binomial(n+m, n-k)*m/(n+m) * 2^k * (n-k)^k/k!)}
for(n=0,20,print1(a(n),", "))
-
{a(n) = my(A = (1/x) * serreverse( x/(1 + x*exp(2*x +O(x^(n+2)))) )); n!*polcoeff(A,n)}
for(n=0,20,print1(a(n),", "))
A365770
Expansion of g.f. A(x,y) satisfying A(x,y) = 1 + x*A(x,y)/(1 - x*y * A(x,y))^2, as a triangle of coefficients T(n,k) of x^n*y^k in A(x,y), read by rows n >= 0.
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 1, 6, 3, 0, 1, 12, 20, 4, 0, 1, 20, 70, 50, 5, 0, 1, 30, 180, 280, 105, 6, 0, 1, 42, 385, 1050, 882, 196, 7, 0, 1, 56, 728, 3080, 4620, 2352, 336, 8, 0, 1, 72, 1260, 7644, 18018, 16632, 5544, 540, 9, 0, 1, 90, 2040, 16800, 57330, 84084, 51480, 11880, 825, 10, 0, 1, 110, 3135, 33660, 157080, 336336, 330330, 141570, 23595, 1210, 11, 0
Offset: 0
G.f.: A(x,y) = 1 + x + (1 + 2*y)*x^2 + (1 + 6*y + 3*y^2)*x^3 + (1 + 12*y + 20*y^2 + 4*y^3)*x^4 + (1 + 20*y + 70*y^2 + 50*y^3 + 5*y^4)*x^5 + (1 + 30*y + 180*y^2 + 280*y^3 + 105*y^4 + 6*y^5)*x^6 + (1 + 42*y + 385*y^2 + 1050*y^3 + 882*y^4 + 196*y^5 + 7*y^6)*x^7 + (1 + 56*y + 728*y^2 + 3080*y^3 + 4620*y^4 + 2352*y^5 + 336*y^6 + 8*y^7)*x^8 + ...
where
A(x,y) = 1 + x*A(x,y)/(1 - x*y*A(x,y))^2.
Also,
A(x,y) = 1 + 1^0*x*A(x,y)/(1 + (1-y)*x*A(x,y))^2 + 2^1*x^2*A(x,y)^2/(1 + (2-y)*x*A(x,y))^3 + 3^2*x^3*A(x,y)^3/(1 + (3-y)*x*A(x,y))^4 + 4^3*x^4*A(x,y)^4/(1 + (4-y)*x*A(x,y))^5 + 5^4*x^5*A(x,y)^5/(1 + (5-y)*x*A(x,y))^6 + ...
and
A(x,y) = 1 + (1+y)*1*(1+y)^(-1)*x*A(x,y)/(1 + 1*x*A(x,y))^2 + (1+y)*2*(2+y)^0*x^2*A(x,y)^2/(1 + 2*x*A(x,y))^3 + (1+y)*3*(3+y)^1*x^3*A(x,y)^3/(1 + 3*x*A(x,y))^4 + (1+y)*4*(4+y)^2*x^4*A(x,y)^4/(1 + 4*x*A(x,y))^5 + ...
This triangle of coefficients of x^n*y^k in A(x,y) begins:
1;
1, 0;
1, 2, 0;
1, 6, 3, 0;
1, 12, 20, 4, 0;
1, 20, 70, 50, 5, 0;
1, 30, 180, 280, 105, 6, 0;
1, 42, 385, 1050, 882, 196, 7, 0;
1, 56, 728, 3080, 4620, 2352, 336, 8, 0;
1, 72, 1260, 7644, 18018, 16632, 5544, 540, 9, 0;
1, 90, 2040, 16800, 57330, 84084, 51480, 11880, 825, 10, 0; ...
-
{T(n,k) = binomial(n+1, n-k)/(n+1) * binomial(2*n-k-1, k)}
for(n=0,10, for(k=0,n, print1(T(n,k),", "));print(""))
A365773
Expansion of g.f. A(x) satisfying A(x) = 1 + x*A(x)/(1 - 3*x*A(x))^2.
Original entry on oeis.org
1, 1, 7, 46, 325, 2446, 19234, 156115, 1298077, 11000584, 94668508, 825087418, 7267943962, 64602794647, 578726742481, 5219620390558, 47357456920165, 431941341136552, 3958215409319608, 36425213089790932, 336475535026075180, 3118885520601252016, 29000562051786329512
Offset: 0
G.f.: A(x) = 1 + x + 7*x^2 + 46*x^3 + 325*x^4 + 2446*x^5 + 19234*x^6 + 156115*x^7 + 1298077*x^8 + 11000584*x^9 + 94668508*x^10 + ...
where A(x) satisfies A(x) = 1 + x*A(x)/(1 - 3*x*A(x))^2
also
A(x) = 1 + 1^0*x^1*A(x)^1/(1 + (-2)*x*A(x))^2 + 2^1*x^2*A(x)^2/(1 + (-1)*x*A(x))^3 + 3^2*x^3*A(x)^3/(1 + 0*x*A(x))^4 + 4^3*x^4*A(x)^4/(1 + 1*x*A(x))^5 + 5^4*x^5*A(x)^5/(1 + 2*x*A(x))^6 + 6^5*x^6*A(x)^6/(1 + 3*x*A(x))^7 + ...
and
A(x) = 1 + 4*1*4^(-1)*x*A(x)/(1 + 1*x*A(x))^2 + 4*2*5^0*x^2*A(x)^2/(1 + 2*x*A(x))^3 + 4*3*6^1*x^3*A(x)^3/(1 + 3*x*A(x))^4 + 4*4*7^2*x^4*A(x)^4/(1 + 4*x*A(x))^5 + 4*5*8^3*x^5*A(x)^5/(1 + 5*x*A(x))^6 + ...
-
{a(n) = sum(k=0, n, binomial(n+1, n-k)/(n+1) * binomial(2*n-k-1, k) * 3^k)}
for(n=0,30, print1(a(n),", "))
-
{a(n) = my(A = (1/x) * serreverse( x/(1 + x/(1 - 3*x +O(x^(n+2)) )^2) ) ); polcoeff(A,n)}
for(n=0,30, print1(a(n),", "))
A365774
Expansion of g.f. A(x) satisfying A(x) = 1 + x*A(x)/(1 - 4*x*A(x))^2.
Original entry on oeis.org
1, 1, 9, 73, 625, 5681, 53945, 528697, 5307489, 54298849, 564079337, 5934390441, 63098046929, 676976915473, 7319925023897, 79684985945753, 872620958369473, 9606337027601345, 106249046704511945, 1180096759408431881, 13156993620315230001, 147193406523115480049
Offset: 0
G.f.: A(x) = 1 + x + 9*x^2 + 73*x^3 + 625*x^4 + 5681*x^5 + 53945*x^6 + 528697*x^7 + 5307489*x^8 + 54298849*x^9 + 564079337*x^10 + ...
where A(x) satisfies A(x) = 1 + x*A(x)/(1 - 4*x*A(x))^2
also
A(x) = 1 + 1^0*x*A(x)/(1 + (-3)*x*A(x))^2 + 2^1*x^2*A(x)^2/(1 + (-2)*x*A(x))^3 + 3^2*x^3*A(x)^3/(1 + (-1)*x*A(x))^4 + 4^3*x^4*A(x)^4/(1 + 0*x*A(x))^5 + 5^4*x^5*A(x)^5/(1 + 1*x*A(x))^6 + 6^5*x^6*A(x)^6/(1 + 2*x*A(x))^7 + ...
and
A(x) = 1 + 5*1*5^(-1)*x*A(x)/(1 + 1*x*A(x))^2 + 5*2*6^0*x^2*A(x)^2/(1 + 2*x*A(x))^3 + 5*3*7^1*x^3*A(x)^3/(1 + 3*x*A(x))^4 + 5*4*8^2*x^4*A(x)^4/(1 + 4*x*A(x))^5 + 5*5*9^3*x^5*A(x)^5/(1 + 5*x*A(x))^6 + ...
-
{a(n) = sum(k=0, n, binomial(n+1, n-k)/(n+1) * binomial(2*n-k-1, k) * 4^k)}
for(n=0,30, print1(a(n),", "))
-
{a(n) = my(A = (1/x) * serreverse( x/(1 + x/(1 - 4*x +O(x^(n+2)) )^2) ) ); polcoeff(A,n)}
for(n=0,30, print1(a(n),", "))
A365775
Expansion of g.f. A(x) satisfying A(x) = 1 + x*A(x)/(1 - 5*x*A(x))^2.
Original entry on oeis.org
1, 1, 11, 106, 1061, 11226, 124026, 1414211, 16515981, 196551736, 2375042076, 29062573926, 359407971786, 4484868410231, 56399986492661, 714067825064426, 9094408567049701, 116436367409647736, 1497734068943432856, 19346547929074098836, 250851388061224003276
Offset: 0
G.f.: A(x) = 1 + x + 11*x^2 + 106*x^3 + 1061*x^4 + 11226*x^5 + 124026*x^6 + 1414211*x^7 + 16515981*x^8 + 196551736*x^9 + 2375042076*x^10 + ...
where A(x) satisfies A(x) = 1 + x*A(x)/(1 - 5*x*A(x))^2
also
A(x) = 1 + 1^0*x*A(x)/(1 + (-4)*x*A(x))^2 + 2^1*x^2*A(x)^2/(1 + (-3)*x*A(x))^3 + 3^2*x^3*A(x)^3/(1 + (-2)*x*A(x))^4 + 4^3*x^4*A(x)^4/(1 + (-1)*x*A(x))^5 + 5^4*x^5*A(x)^5/(1 + 0*x*A(x))^6 + 6^5*x^6*A(x)^6/(1 + 1*x*A(x))^7 + ...
and
A(x) = 1 + 6*1*6^(-1)*x*A(x)/(1 + 1*x*A(x))^2 + 6*2*7^0*x^2*A(x)^2/(1 + 2*x*A(x))^3 + 6*3*8^1*x^3*A(x)^3/(1 + 3*x*A(x))^4 + 6*4*9^2*x^4*A(x)^4/(1 + 4*x*A(x))^5 + 6*5*10^3*x^5*A(x)^5/(1 + 5*x*A(x))^6 + ...
-
{a(n) = sum(k=0, n, binomial(n+1, n-k)/(n+1) * binomial(2*n-k-1, k) * 5^k)}
for(n=0,30, print1(a(n),", "))
-
{a(n) = my(A = (1/x) * serreverse( x/(1 + x/(1 - 5*x +O(x^(n+2)) )^2) ) ); polcoeff(A,n)}
for(n=0,30, print1(a(n),", "))
Showing 1-5 of 5 results.
Comments