cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A365818 G.f. A(x) satisfies: A(x) = x * (1 + A(x))^3 / (1 - 5 * A(x)).

Original entry on oeis.org

0, 1, 8, 107, 1760, 32298, 634128, 13034247, 276943568, 6033834950, 134069957840, 3026476515790, 69213144181888, 1600157697995092, 37337615574348960, 878166685063548639, 20797051344280763184, 495509950454603339310, 11869278747340342255440, 285669061791469915886250, 6904850429493240677872320
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 25 2023

Keywords

Comments

Reversion of g.f. for octagonal numbers (with signs).

Crossrefs

Programs

  • Mathematica
    nmax = 20; A[] = 0; Do[A[x] = x (1 + A[x])^3/(1 - 5 A[x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    CoefficientList[InverseSeries[Series[x (1 - 5 x)/(1 + x)^3, {x, 0, 20}], x], x]	
    Join[{0}, Table[1/n Sum[Binomial[n + k - 1, k] Binomial[3 n, n - k - 1] 5^k, {k, 0, n - 1}], {n, 1, 20}]]

Formula

a(n) = (1/n) * Sum_{k=0..n-1} binomial(n+k-1,k) * binomial(3*n,n-k-1) * 5^k for n > 0.
a(n) ~ 3^(3/2) * 2^(n - 1/2) * (154 + 31*sqrt(31))^n / (sqrt((2821 + 506*sqrt(31))*Pi) * n^(3/2) * 5^(2*n)). - Vaclav Kotesovec, Sep 26 2023