A365824 a(n) = a(n-1) + 5*a(n-2), for n >= 0, with a(0) = 1 and a(1) = 0.
1, 0, 5, 5, 30, 55, 205, 480, 1505, 3905, 11430, 30955, 88105, 242880, 683405, 1897805, 5314830, 14803855, 41378005, 115397280, 322287305, 899273705, 2510710230, 7007078755, 19560629905, 54596023680, 152399173205, 425379291605, 1187375157630, 3314271615655
Offset: 0
Examples
phi21^2 = a(2) + b(2)*phi(n) = 5 + phi21 = 7.79128784..., a real algebraic integer in Q(sqrt(21)). (1/phi21)^2 = a(-2) + b(-2)*phi21 = (1/25)*(6 - phi21) = 0.12834848..., a real algebraic number in Q(sqrt(21)).
Links
Programs
-
Mathematica
LinearRecurrence[{1,5},{1,0},50] (* Paolo Xausa, Nov 21 2023 *)
-
PARI
a(n) = abs([1, 3; 1, -2]^(n-2)*[5; 5])[2, 1] \\ Thomas Scheuerle, Nov 20 2023
Formula
a(n) = a(n-1) + 5*a(n-2), for n >= 0, with a(0) = 1 and a(1) = 0.
G.f.: (1 - x)/(1 - x - 5*x^2).
a(n) = S21(n+1) - S21(n), for n >= 0, where S21(n) = sqrt(-5)^(n-1)*S(n-1, 1/sqrt(-5)), with the Chebyshev polynomials {S(n, x)} (see A049310).
The above mentioned sequence {b(n)} has terms b(n) = A015440(n-1) = S21(n), for n >= 0, with the same recurrence as {a(n)} but with b(0) = 0 and b(1) = 1, and g.f. x/(1 - x - 5*x^2).
The formula for negative indices of S is: S(-1, 0) = 0 and S(-n, x) = -S(n-2, x) for n >= 2.
Comments