A365831 Number of incomplete strict integer partitions of n, meaning not every number from 0 to n is the sum of some submultiset.
0, 0, 1, 1, 2, 3, 3, 4, 6, 8, 9, 11, 13, 16, 21, 25, 31, 36, 43, 50, 59, 69, 82, 96, 113, 131, 155, 179, 208, 239, 276, 315, 362, 414, 472, 539, 614, 698, 795, 902, 1023, 1158, 1311, 1479, 1672, 1881, 2118, 2377, 2671, 2991, 3354, 3748, 4194, 4679, 5223, 5815
Offset: 0
Keywords
Examples
The strict partition (14,5,4,2,1) has no subset summing to 13 so is counted under a(26). The a(2) = 1 through a(10) = 9 strict partitions: (2) (3) (4) (5) (6) (7) (8) (9) (10) (3,1) (3,2) (4,2) (4,3) (5,3) (5,4) (6,4) (4,1) (5,1) (5,2) (6,2) (6,3) (7,3) (6,1) (7,1) (7,2) (8,2) (4,3,1) (8,1) (9,1) (5,2,1) (4,3,2) (5,3,2) (5,3,1) (5,4,1) (6,2,1) (6,3,1) (7,2,1)
Crossrefs
A325799 counts non-subset-sums of prime indices.
Programs
-
Mathematica
nmz[y_]:=Complement[Range[Total[y]], Total/@Subsets[y]]; Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Length[nmz[#]]>0&]],{n,0,15}]