cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A365839 Expansion of (1/x) * Series_Reversion( x*(1-x)^3/(1+x)^2 ).

Original entry on oeis.org

1, 5, 38, 345, 3454, 36786, 408848, 4687969, 55048310, 658645110, 8001060132, 98419541226, 1223430822028, 15344868505700, 193952279202660, 2467977904556145, 31589883835911846, 406463726382152142, 5254324418131556900, 68206459568715464110, 888731044203480723076
Offset: 0

Views

Author

Seiichi Manyama, Sep 20 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(3*n+k+2, k)*binomial(2*(n+1), n-k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} binomial(3*n+k+2,k) * binomial(2*(n+1),n-k).

A365840 Expansion of (1/x) * Series_Reversion( x*(1-x)^4/(1+x)^2 ).

Original entry on oeis.org

1, 6, 55, 602, 7263, 93192, 1247636, 17230290, 243669007, 3511010950, 51361157967, 760784343128, 11387857096900, 171988619895216, 2617571721008520, 40105744064042626, 618116513218831407, 9576289414539654450, 149053521972041737413
Offset: 0

Views

Author

Seiichi Manyama, Sep 20 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(4*n+k+3, k)*binomial(2*(n+1), n-k))/(n+1);

Formula

a(n) = (1/(n+1)) * Sum_{k=0..n} binomial(4*n+k+3,k) * binomial(2*(n+1),n-k).
Showing 1-2 of 2 results.