A365858 Number of cyclic compositions of 2*n-1 into odd parts.
1, 2, 3, 5, 10, 19, 41, 94, 211, 493, 1170, 2787, 6713, 16274, 39651, 97109, 238838, 589527, 1459961, 3626242, 9030451, 22542397, 56393862, 141358275, 354975433, 892893262, 2249412291, 5674891017, 14335757586, 36259245523, 91815545801, 232745229290, 590586152235, 1500020153485, 3813274653414
Offset: 1
Keywords
Links
- Joshua P. Bowman, Compositions with an Odd Number of Parts, and Other Congruences, J. Int. Seq (2024) Vol. 27, Art. 24.3.6. See p. 25.
- Brian Hopkins, Jesús Sistos Barrón, and Hua Wang, Conjugating cyclic n-color compositions, Utilitas Mathematica (2025) Vol. 122, 53-64. See p. 62.
- Jesus Omar Sistos Barron, Counting Conjugates of Colored Compositions, Honors College Thesis, Georgia Southern Univ. (2024), No. 985. See p. 30.
Programs
-
Mathematica
Table[1/(2*n - 1) * Sum[EulerPhi[k]*LucasL[(2*n - 1)/k], {k, Divisors[2*n - 1]}], {n, 1, 40}] (* Vaclav Kotesovec, Sep 22 2023 *)
-
PARI
N=99; x='x+O('x^N); B(x)=x/(1-x^2); A=Vec(sum(k=1, N, eulerphi(k)/k*log(1/(1-B(x^k))))); vector(#A\2,n,A[2*n-1]) \\ Joerg Arndt, Sep 22 2023
-
Python
from sympy import totient, lucas, divisors def A365858(n): return sum(totient(((n<<1)-1)//k)*(lucas(k)-((k&1^1)<<1)) for k in divisors((n<<1)-1,generator=True))//((n<<1)-1) # Chai Wah Wu, Sep 23 2023
Formula
G.f.: (1/2) * Sum_{k odd} (phi(k)/k)*log((1+x^k-x^(2k))/(1-x^k-x^(2*k))), where phi(n) = A000010(n).
a(n) = (1/(2*n-1)) * Sum_{k divides 2n-1} phi(k)*A000204((2*n-1)/k).
a(n) ~ ((1+sqrt(5))/2)^(2*n-1) / (2*n). - Vaclav Kotesovec, Sep 22 2023
Comments