A365857 Number of cyclic compositions of 2*n into odd parts.
1, 2, 4, 7, 14, 30, 63, 142, 328, 765, 1810, 4340, 10461, 25414, 62074, 152287, 375166, 927554, 2300347, 5721044, 14264308, 35646311, 89264834, 223959710, 562878429, 1416953362, 3572233420, 9018211989, 22795835726, 57690911720, 146164582455, 370705552702, 941109975022, 2391391374017, 6081865318124
Offset: 1
Keywords
Links
- A. K. Agarwal, n-colour compositions, Indian J. Pure Appl. Math. 31 (11) (2000), 1421-1427.
- Joshua P. Bowman, Compositions with an Odd Number of Parts, and Other Congruences, J. Int. Seq (2024) Vol. 27, Art. 24.3.6. See p. 25.
- Meghann Moriah Gibson, Daniel Gray, and Hua Wang, Combinatorics of n-color cyclic compositions, Discrete Mathematics 341 (2018), 3209-3226.
Programs
-
PARI
N=99; x='x+O('x^N); B(x)=x/(1-x^2); A=Vec(sum(k=1, N, eulerphi(k)/k*log(1/(1-B(x^k))))); vector(#A\2,n,A[2*n]) \\ Joerg Arndt, Sep 22 2023
-
Python
from sympy import totient, lucas, divisors def A365857(n): return sum(totient((n<<1)//k)*(lucas(k)-((k&1^1)<<1)) for k in divisors(n<<1,generator=True))//n>>1 # Chai Wah Wu, Sep 23 2023
Comments